
RELY-GUARANTEE SEMANTICS FOR SEPARATION-LOGIC-BASED SPECIFICATION

EXTRACTION

Paul He

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2024

Supervisor of Dissertation

Steve Zdancewic, Schlein Family President’s Distinguished Professor of Computer and
Information Science

Graduate Group Chairperson

Mayur Naik, Professor of Computer and Information Science

Dissertation Committee

Rajeev Alur, Zisman Family Professor of Computer and Information Science
Benjamin C. Pierce, Henry Salvatori Professor of Computer and Information Science
Stephanie Weirich, ENIAC President’s Distinguished Professor of Computer and Information
Science
Eddy Westbrook, Senior Research Scientist, Lawrence Livermore National Laboratory

RELY-GUARANTEE SEMANTICS FOR SEPARATION-LOGIC-BASED SPECIFICATION

EXTRACTION

COPYRIGHT

2024

Paul He

ACKNOWLEDGEMENTS

First and foremost I must thank my advisor, Steve Zdancewic, who was always supportive of my

ideas and interests. I am still amazed at his ability to pinpoint and solve technical problems, and

his flexibility and enthusiasm made my PhD experience an excellent one. Eddy Westbrook was

my closest collaborator on the work in this dissertation, and a wonderful one, always optimistic

and ready to help with each new problem I had. Thank you to Rajeev Alur, Benjamin C. Pierce,

and Stephanie Weirich, for serving on my committee and for your role in making Penn a great

place to become a computer scientist.

I am immensely grateful that I could learn to not only be a researcher, but also to be an educator

during my time at Penn. My time spent teaching was the most rewarding aspect of my PhD.

Thank you to all my students and TAs, as well as everyone who helped improve my teaching, in

particular Tony Liu, Travis McGaha, Ian Petrie, Swapneel Sheth, and Harry Smith.

My time in Philadelphia was greatly enriched by the support of my friends and family. Thank you

to Irene Yoon, who was like a sister to me. Konstantinos Kallas, Yiyun Liu, Mathieu Ouellet, and

Anne-Marie Zaccarin put up with the brunt of my complaints, and for that I am grateful.

Finally, this dissertation would not have been possible without the innumerable people who have

influenced me in some way. These include the scientists who came before me, other students

throughout the many years of schooling, and those who were briefly in my life whose names I

never learned. Thank you—we truly stand on the shoulders of giants.

iii

ABSTRACT

RELY-GUARANTEE SEMANTICS FOR SEPARATION-LOGIC-BASED SPECIFICATION

EXTRACTION

Paul He

Steve Zdancewic

While formal verification promises correctness guarantees about software, these guarantees them-

selves must be verified. This dissertation focuses on the soundness of the Heapster verification

tool, which converts imperative programs into functional specifications. Heapster is able to do

this by using a type system based on separation logic to guarantee memory safety, ensuring that

pointer operations can be erased in the functional program. We prove the soundness of this type

system using a novel concept called rely-guarantee permissions as the semantics of types. These

rely-guarantee permissions are derived from rely-guarantee reasoning, a technique for reasoning

about concurrent code. We show that this approach is expressive enough to represent types to

typecheck imperative programs that use complex features like pointers, linked lists, and Rust life-

times. Additionally, we show that the semantics are flexible enough to represent the extraction of

equivalent functional programs—with these features erased—as part of the typechecking process.

To increase confidence in the correctness of these results and thus in the correctness of Heapster,

all our proofs are formalized in Coq.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . vii

CHAPTER 1 : Introduction . 1

1.1 Motivation . 1

1.2 Heapster . 2

1.3 Theory of Heapster . 5

1.4 Contribution and Attribution . 6

1.5 Dissertation Structure . 7

CHAPTER 2 : Background . 9

2.1 Rely-Guarantee Reasoning . 9

2.2 Separation Logic . 13

2.3 Interaction Trees . 15

CHAPTER 3 : Related Work . 18

3.1 Semantics of Separation Logic . 18

3.2 Extracting Rust to Functional Specifications . 20

3.3 Combining Rely-Guarantee and Separation Logic . 22

3.4 Permission-Based Type Systems . 23

CHAPTER 4 : Rely-Guarantee Permissions . 26

4.1 The Rely-Guarantee Permission Lattice . 27

4.2 Coexistence . 32

4.3 Permission Changes . 35

4.4 Permission Sets . 36

v

CHAPTER 5 : A Simple Separation-Logic Type System . 41

5.1 Defining Typing . 42

5.2 General Typing Rules . 45

5.3 Defining Memory Operations . 48

5.4 Type Soundness . 51

5.5 Memory Typing Rules . 52

CHAPTER 6 : Specification Extraction . 61

6.1 Definitions and Semantic Typing . 62

6.2 Permission Types . 67

6.3 Pointer Types . 78

6.4 Array Types . 86

6.5 Recursive Types . 91

6.6 A Bigger Example . 96

6.7 The Heapster Tool . 100

CHAPTER 7 : Lifetimes . 104

7.1 Defining Lifetime Operations . 107

7.2 Lifetime Permissions . 109

7.3 Recovering Split Permissions . 115

7.4 Lifetime Types and Typing Rules . 119

7.5 A Lifetime Example . 122

7.6 Differences with Heapster Lifetimes . 126

CHAPTER 8 : Future Work and Conclusion . 129

8.1 Concurrency . 129

8.2 Adding Invariants to Rely-Guarantee Permissions . 132

8.3 Conclusion . 133

BIBLIOGRAPHY . 135

vi

LIST OF FIGURES

FIGURE 1.1 The input code in C, given as input to Heapster. 3
FIGURE 1.2 The output specification in Coq, extracted by Heapster. 4

FIGURE 4.1 Example permissions for a program that allocates new memory. 27

FIGURE 5.1 An example of a heap. 49
FIGURE 5.2 Two possible valid starting and final memory layouts. 59

FIGURE 6.1 Basic structural typing rules. 68
FIGURE 6.2 Typing rules for equality permission types. 69
FIGURE 6.3 Typing rules for conjunction permission types. 71
FIGURE 6.4 Typing rules for disjunction permission types. 73
FIGURE 6.5 Typing rules for pointer types. 81
FIGURE 6.6 Typing rules for arrays. 87
FIGURE 6.7 Typing rules for recursive types. 94
FIGURE 6.8 Typing rules for reachability types. 95

FIGURE 7.1 A Rust program that uses lifetimes implicitly. 105
FIGURE 7.2 The life cycle of a lifetime ℓ. 107
FIGURE 7.3 How we want to use a lifetime ℓ to split a permission π. 109
FIGURE 7.4 How we will use a lifetime ℓ to split a permission π. 114
FIGURE 7.5 How we will use a lifetime ℓ to split a pointer type. 119

vii

CHAPTER 1

Introduction

1.1. Motivation

As software complexity grows, so does the potential for errors. Typical techniques used in soft-

ware development for ensuring the reliability and correctness of software, like testing and code re-

views, can only show the presence of errors and not their absence. In contrast, formal verification

can prove formal guarantees about program correctness. This is particularly important for high-

stakes applications, like those in the healthcare or automotive industries, where software bugs can

have catastrophic consequences. Consequently, to have full confidence in the strong claims made

by formal verification tools, these tools must also be reliable and undergo verification themselves.

Imperative languages form one large class of programming languages. Code written in these

languages, with their use of memory and pointers, is difficult to verify. One approach for handling

imperative programs is separation logic [Rey02], a family of program logics that are effective for

modularly verifying pointer-manipulating code. Some separation logics, like Iris [Jun+15] and the

Verified Software Toolchain (VST) [App11], have very strong reasoning principles and support

many language features. This power has the cost of requiring skilled users to perform the manual

verification effort. Other separation logic tools like Infer [Cal+15] focus on automated verification,

and must settle for weaker rules and guarantees—a tradeoff for automation and scalability. A

second approach for preventing bugs in imperative code that has seen widespread adoption is the

type system of the Rust programming language [KN23]. Rust’s strong type system is based on

linear types to guarantee memory safety. Its notion of ownership in the type system prevents the

creation of dangling pointers, thereby preventing a large class of memory errors.

As for the reliability of these verification approaches, there are a variety of methods for formally

proving the soundness of these systems. Most separation logics have their own semantics for

assertions in the logic, and more complex logics with powerful rules have correspondingly com-

plex semantics and proofs of soundness. Soundness of the Rust type system was proven using

1

the Iris separation logic [Jun+17], leveraging the ability of separation logic to easily represent

ownership of resources, a key concept in the type system. In recent years, Iris in particular has

gained popularity as a feature-rich and well-supported separation logic framework, becoming a

preferred logic for implementing other verification tools and proving their soundness [HBK19;

MJP20; VB23; VP23; Biz+19].

1.2. Heapster

In this dissertation, I focus on the soundness of a verification tool developed at Galois Inc. called

Heapster [He+21]. Heapster converts imperative programs to functional ones, removing complex

pointer reasoning. Heapster uses ideas from both of the approaches discussed above for verifying

imperative code. It uses a type system—one strongly based in separation logic—that has similar

restrictions as Rust and that also guarantees memory safety. It is semi-automated, requiring users

to supply type annotations during the verification process. Unlike most verification tools, the goal

of Heapster is not to prove any specific property of programs, but to extract a functional specifi-

cation from an imperative program. This functional specification—since it no longer contains any

memory operations—is then easier to verify than the original imperative program.

The crux of Heapster’s approach is the idea that memory-safe imperative programs have equiva-

lent pure functional programs. Several other systems like Electrolysis [Ull16], RustHorn [MTK20]

and Aeneas [HP22] have also used this idea by focusing on Rust, since Rust’s type system guaran-

tees memory safety. As such, Heapster’s approach can be thought of as requiring users to provide

Rust-like types for code written in other imperative languages. Chapter 7 also discusses how

Heapster can take in Rust code as input directly and simplify the user experience.

As an example of Heapster in action, consider the example by Silver et al. [Sil+23b, Section 3] in

Figure 1.1. The input to Heapster is a function written in C for checking whether a value x is in

a linked list l. This function, like all pointer-manipulating code in C, is not memory safe. While

the argument l has a pointer type, it is not guaranteed to point to either null or a valid linked list

node. It could point to something else entirely, which would cause this function to fail. To ensure

that this code is memory safe and therefore extractible to a functional specification, the user must

2

typedef struct list64_t {
int64_t data;
struct list64_t *next;

} list64_t;

int64_t is_elem (int64_t x, list64_t *l) {
if (l == NULL) {

return 0;
} else {

if (l->data == x) {
return 1;

} else {
list64_t *l2 = l->next;
return is_elem(x, l2);

}
}

}

Figure 1.1: The input code in C, given as input to Heapster.

provide type annotations for this function to Heapster:

(x : int64, l : list64)→ int64

The int64 type is a functional representation of a 64-bit integer as a bitvector (defined like Nat in

Section 6.2.2, using an existential type), and list64 is a functional version of a list of 64-bit integers

(defined like List A in Section 6.5). The list64 type is defined as a recursive type, telling us that the

pointer with this type must be either null or point to an int64 and another list64. This type rules

out invalid pointers, and the additional information in the type allows typechecking to produce

the functional specification for is_elem in Figure 1.2.

This specification program is built using rec_fix_spec, a fixed point combinator. Within the body

of the generator function for this recursive function, the argument rec is used to refer to the re-

cursive call. While it is not as simple as standard pattern matching on a list type, this functional

program is essentially pattern matching on the structure of the list l. The exact details of this pat-

tern matching using an unfold operation will be presented in Section 6.5. In the base case where

the list is empty, the program returns 0. In the recursive case where the list is nonempty, the front

3

Definition is_elem_spec : bitvector 64 * list (bitvector 64) ->
itree_spec E (bitvector 64) :=

rec_fix_spec (fun rec ’(x, l) =>
either (* eliminator for the sum type *)

unit (bitvector 64 * list (bitvector 64)) (* input types *)
(itree_spec _ (bitvector 64)) (* output type *)
(fun _ => Ret (intToVc 64 0)) (* nil case *)
(fun ’(hd, tl) => (* cons case *)

if bvEq 64 hd x
then Ret (intToVc 64 1) (* return 1 *)
else rec (x, tl)) (* recursive call *)

(unfoldList l)). (* unfolded list argument *)

Figure 1.2: The output specification in Coq, extracted by Heapster.

of the list is compared with the element x, and continues by either returning 1 or continuing to

recurse.

With this functional specification in hand, one can then prove arbitrary properties of this program.

Heapster provides automation for common cases, like verifying that the specification cannot result

in an error, or that it refines another, higher-level specification [Sil+23b]. This task of relating

imperative programs to functional specifications is a common one for verifying the functional

correctness of programs. As shown by Silver [Sil23, Chapter 5], the process of doing this in tools

like VST can be tedious—even if the code is simple—due to the fact that users must reason about

pointers using separation logic. It is this tedious but conceptually simple process that Heapster

automates. By removing imperative features automatically, relating the extracted specification to

a higher level specification then only has to reason about its functional behavior.

Since automation is Heapster’s primary goal, it is limited in the features it can support in im-

perative programs. Like Rust, Heapster’s type system must be overly conservative and does not

support complex uses of pointers that involve circularity, like doubly linked lists, even when they

are used safely. As I will show in Example 5.21 which uses a circular linked list, Heapster can

in theory typecheck programs that use pointers in more complex ways. However, these more

complex uses of pointers are more difficult to typecheck automatically. So while it is theoretically

possible to handle such programs, Heapster does not support these uses of pointers for the sake of

4

automation. As such, Heapster has only been used for programs that have simple uses of pointers,

such as singly-linked lists, and I also focus primarily on these use cases in this dissertation.

1.3. Theory of Heapster

This dissertation presents the theory of Heapster, mechanized in the Coq proof assistant, justifying

the correctness of Heapster’s type system. I will use rely-guarantee reasoning, a technique for

reasoning about concurrent code, as a way to prove the soundness of the Heapster type system.

My thesis is that rely-guarantee reasoning is a good semantic foundation for separation-logic

style reasoning to extract functional specifications from imperative programs.

For the soundness of the Heapster type system, I use a construct called rely-guarantee permis-

sions, based on rely-guarantee reasoning, to define the semantics of types. Typing judgments in

this type system are written as Π ⊢ ti ⪅ ts : T in the theory of Heapster, and is defined using a

bisimulation relation. The arguments ti and ts correspond to the input imperative program and the

extracted specification program, respectively. The other two components of the typing judgment,

Π and T, roughly correspond to the type annotations that users supply to Heapster, where Π are

the types of the inputs to a function, and T are the types of outputs from a function. When rep-

resented this way, the Heapster type system resembles a separation logic, where Π and T are the

precondition and postcondition, respectively, for the pair of programs. Indeed, this type system

can be viewed as a separation logic, and my approach of semantic type soundness corresponds to

the standard approach for proving soundness of a separation logic by defining a semantic model

of assertions.

While we use rely-guarantee permissions as the semantics of types, this is not the only possibil-

ity. Using an existing semantics for separation logic to represent types, or implementing the type

system in Iris, as many other tools have done, would have likely have also been successful for

proving soundness. There are, however, several reasons why rely-guarantee semantics are useful

for verifying Heapster. First, rely-guarantee reasoning uses relations to describe how program

states can change, rather than most separation logic semantics which use predicates to describe

5

the current state. This allows us to express very fine-grained constraints, as rely-guarantee permis-

sions can describe the exact state changes permitted by each type, which is especially useful for

representing lifetime types. Additionally, since these relations describe the entire change in state,

this results in a language-agnostic semantics for the types—useful for a relation involving two dif-

ferent languages. Second, Heapster was designed with these rely-guarantee semantics in mind.

Because of this, many of the types have very natural definitions using rely-guarantee permissions,

and would have likely required more convoluted encodings using other semantics. Lastly, many

of the complex features of other separation logics are not present in Heapster, due to its focus

on automated specification extraction. While features like higher-order state and concurrency are

very useful for general-purpose separation logics like Iris, the extra complexity they add would

not have any benefits for Heapster.

This work on the theory of Heapster was done after the core of Heapster was developed by my

collaborators, and is thus a theoretical justification of an existing system. While the theory did not

uncover any bugs in the Heapster implementation, it did help in explaining the intuition behind

the implementation, and in communicating the usefulness of the tool.

1.4. Contribution and Attribution

The contribution of this dissertation is the theory of Heapster: a semantic interpretation of the

Heapster type system, defined using rely-guarantee permissions. Using this semantics, I prove

the soundness of the type system using a semantic type soundness approach. The definitions and

proofs are formalized in the Coq proof assistant, and the formalization can be found at

https://github.com/Grain/thesis-formalization/.

Part of the work described in this dissertation has been presented in the paper “A Type System

for Extracting Functional Specifications from Memory-Safe Imperative Programs” by He et al.

[He+21]. Of the content of this paper, the development of Heapster was done by my collaborators

at Galois, and Theorem 4.6 (Theorem 6.13 in this dissertation) was done by Matthew Yacavone and

Eddy Westbrook. These are not contributions of this dissertation, though the theorem is included

6

https://github.com/Grain/thesis-formalization/

in the proof development repository for completeness. I was the main contributor to the rest of

the paper, and the technical material in Chapters 4 and 6 are based on that work, as is some of the

related work in Chapter 3. The technical material described in Chapters 5 and 7 have not been

published before, though Chapter 5 includes work that was done in the process of preparing the

aforementioned paper.

1.5. Dissertation Structure

Chapter 2 introduces some crucial background topics. First, rely-guarantee reasoning, which is the

basis of the definition of rely-guarantee permissions. Second, separation logic, which is a major

motivator of the Heapster type system that is proved sound with rely-guarantee permissions.

Finally, interaction trees, which are used to represent programs in the theory of Heapster.

Chapter 3 describes related work and compares it to the theory of Heapster presented in this

dissertation.

Chapter 4 introduces rely-guarantee permissions, the key definition that I will use throughout this

dissertation for representing types in the theory of Heapster. This chapter introduces some intu-

itions about rely-guarantee permissions and basic definitions without yet defining how programs

are related to these permissions.

Chapter 5 defines a language with a heap and uses rely-guarantee permissions to define a basic

separation-logic type system. The intuitions from the previous chapter are formalized in these

definitions, and I prove that this type system is sound.

Chapter 6 generalizes the type system in the previous section to work with two programs, an

imperative heap-manipulating program as in the previous section, and a pure functional pro-

gram. This models the Heapster type system, which extracts a functional specification from an

imperative program. I again prove soundness of this new type system, present the semantic inter-

pretation of types in Heapster, and prove the typing rules of the type system.

Chapter 7 further extends the specification-extraction type system by supporting the lifetimes

7

present in the Heapster type system. Lifetimes are used in Heapster to both support Rust types

which use lifetimes, and to increase the power of the type system. I use rely-guarantee permissions

to define the semantic interpretation of several new types related to lifetimes, and prove their

associated typing rules.

Finally, Chapter 8 discusses several directions for future work and concludes.

8

CHAPTER 2

Background

This chapter introduces three topics used heavily in the rest of the dissertation. First, we introduce

rely-guarantee reasoning, the core of the rely-guarantee permissions we will use as the semantics

of types in the type system. Second, we discuss separation logic, one of the core concepts used in

the design of the type system. Third, we describe interaction trees (ITrees), a data structure that

we use to represent programs in the Coq formalization of the type system.

2.1. Rely-Guarantee Reasoning

Rely-guarantee reasoning [Jon83] is an extension of Hoare logic [Hoa69] designed to reason about

shared-memory concurrent programs. It originates from earlier work for reasoning about concur-

rency by Owicki and Gries [OG76], which focuses on proving that if two pieces of code do not

interfere, then they can be safely run concurrently. The so-called Owicki-Gries method provides

the following rule to prove a Hoare triple for the parallel composition of two threads:

{P1}C1{Q1} {P2}C2{Q2} C1 and C2 are interference-free
{P1 ∩ P2}C1 ∥ C2{Q1 ∩Q2}

Here, interference-freedom is defined as all assertions in each parallel statement remaining true

when state changes occur in other statements.

For example, this rule can verify that two threads which change different variables works properly

when run concurrently:

{x = 0}x := 1{x = 1} {y = 0}y := 2{y = 2} these two threads are interference-free
{x = 0∧ y = 0}x := 1 ∥ y := 2{x = 1∧ y = 2}

The interference-freedom portion can be proven by considering all combinations of assertions and

statements, and seeing that they do not change the validity of the preconditions and postcondi-

9

tions in the other thread. Namely, we have to check that the following four Hoare triples hold:

{x = 0} y := 2 {x = 0} {y = 0} x := 1 {y = 0}

{x = 1} y := 2 {x = 1} {y = 2} x := 1 {y = 2}

However, a major problem with this approach is that it is not compositional: the interference-

freedom property cannot be obtained by composing specifications of its individual threads. If

we had a third thread that sets a different variable z, then we would need to look at both the

implementation and the assertions of this thread and perform more checks to ensure interference-

freedom. In addition to the four checks above, we would also have to check the validity of eight

additional Hoare triples if we were to compose the new thread z := 3 to the two threads from

before:
{x = 0} z := 3 {x = 0} {z = 0} x := 1 {z = 0} {z = 0} y := 2 {z = 0}

{x = 1} z := 3 {x = 1} {z = 3} x := 1 {z = 3} {z = 3} y := 2 {z = 3}

{y = 0} z := 3 {y = 0}

{y = 2} z := 3 {y = 2}

This approach does not scale. The issue is that the specification of the thread does not specify

its interference, so we need to inspect the implementation of each thread to conclude that they

do not interfere. Jones aimed to fix this compositionality issue with rely-guarantee reasoning

[Jon83], which adds rely and guarantee relations to the specifications of programs. These relations,

in conjunction with the existing preconditions and postconditions, express the information needed

to check for interference-freedom.

The rely relation, a binary relation on states, describes what a thread expects of the environment:

the thread can rely on the fact that state changes made by other threads satisfy this relation. Similar

to the interference-freedom check of Owicki and Gries, a valid rely relation must be checked so

that the preconditions and postconditions are stable under it: any state change allowed by the

rely must not change whether the state satisfies the precondition or postcondition. The guarantee

relation, also a binary relation on states, describes how a thread will change the state: the thread

10

is guaranteed to only make state updates that are in the relation. A valid guarantee relation must

be checked so that all state changes in a program satisfy the relation. With these new relations,

showing interference-freedom is much easier—each thread’s guarantee just needs to be included

in every other thread’s rely.

With this richer specification, rely-guarantee reasoning can verify concurrent programs composi-

tionally with the following rule:1

{P1, R1}C1{G1, Q1} {P2, R2}C2{G2, Q2} G1 ⊆ R2 G2 ⊆ R1

{P1 ∩ P2, R1 ∩ R2}C1 ∥ C2{(G1 ∪ G2)∗, Q1 ∩Q2}
PAR

where (−)∗ denotes reflexive-transitive closure.

This rule is similar to the parallel composition rule of Owicki and Gries, but the non-interference

portion is replaced by a simpler check: that each thread’s guarantee is included in the other’s rely.

As with the previous rule, the precondition and postcondition are combined using intersection, as

is the rely, since the parallel composition of both threads will rely on any changes relied upon by

either thread. The guarantee is combined using the reflexive-transitive closure of the union of both

guarantees. The union captures the fact that any updates performed by parallel composition must

originate from one of the two threads. The reflexive-transitive closure ensures that combinations of

updates from both threads—as well as the case where no update has occurred at all—are included.

This fixes the compositionality issue from the approach of Owicki and Gries, allowing us to com-

pose specifications using parallel composition without needing to inspect the implementation of

each. We first need to obtain a specification for the individual threads, which requires the checks

1For presentation purposes, this is a simplified version of the actual rule presented by Jones. Combining the various
relations is more complex in the original system.

11

mentioned above:

{
P︷ ︸︸ ︷

x = 0,

R︷ ︸︸ ︷
x = x′}x := 1{

G︷ ︸︸ ︷
x′ = 1∧ y = y′ ∧ z = z′,

Q︷ ︸︸ ︷
x = 1}

{y = 0, y = y′}y := 2{x = x′ ∧ y′ = 2∧ z = z′, y = 2}

{z = 0, z = z′}z := 3{x = x′ ∧ y = y′ ∧ z′ = 3, z = 3}

In the definitions of the relies and guarantees, we use x and x′ to denote the initial and final values

of x, respectively. These specifications’ relies say that each thread requires that other threads do

not change the variable they are changing. The guarantees say that each thread changes their own

variable, and do not change the other variables in the program.

Then, to compose them together using the parallel composition rule, we simply need to check

their relies and guarantees, and not the implementation of each thread. Applying the parallel

composition rule twice gives us the following specification for the entire program:

{x = 0, y = 0, z = 0, x = x′ ∧ y = y′ ∧ z = z′}

x := 1 ∥ y := 2 ∥ z := 3

{(x = x′ ∧ y = y′ ∧ z = z′) ∨ · · · ∨ (x′ = 1∧ y′ = 2∧ z′ = 3), x = 1∧ y = 2∧ z = 3}

While this provides compositionality, a major weakness of rely-guarantee reasoning is that thread

specifications cannot be created completely independently from other threads. Such a property,

called modularity, is highly desirable in a real system with many independent pieces and many

contributors. With rely-guarantee reasoning, a thread’s specification must include information

about the entire global state, not just state local to each thread. This is because rely and guarantee

relations must include all possible behaviors for the parallel composition rule to check whether

two threads interfere. For example, the above specifications for the individual threads need to

state in their guarantees that they do not modify the variables used in other threads, in order for

their guarantees to be included in other threads’ relies. If we wanted to add a fourth thread which

12

sets a new variable w to 0, then the fact that the original three threads do not modify w would

have to be added to their guarantees. The next section on separation logic addresses this lack of

modular reasoning.

2.2. Separation Logic

Separation logic [Rey02] is an extension of Hoare logic to handle verification of heap-manipulating

programs in a modular way. Unlike the program logics in the previous section, the original goal

of separation logic was not to handle concurrent code, though it was eventually extended to con-

currency as well. A central concept is the separating conjunction, ∗, which, unlike regular con-

junction, states that two assertions are true on two separate parts of the heap. These partial heaps

are separate, written as h1 ⊥ h2, if they have disjoint domains. Then P ∗ Q means that P holds on

h1, Q holds on h2, and the overall heap can be split into h1 and h2 such that h1 ⊥ h2. This solves the

modularity issue of rely-guarantee and earlier program logics: specifications only need to include

state that they depend on. Since the specification is about a disjoint portion of the heap, every

other part of the heap can be assumed to stay unchanged. For example, an individual thread from

the example in the previous section now has a much simpler specification:

{x 7→ 0}x := 1{x 7→ 1}

The points-to assertion p 7→ v says that a pointer p points to memory containing the value v.

Other parts of the state that are not affected by the program can be added by the following rule:

{P}C{Q}
{P ∗ R}C{Q ∗ R}

This rule is named the frame rule, after the frame problem [Hay71] in artificial intelligence for

the problem of having to specify which aspects of the world remain unchanged after an action is

performed, exactly the problem we had earlier.

Concurrent separation logic (CSL) [OHe07] was soon developed to extend separation logic to

13

concurrent heap-manipulating programs. If two threads can be run with disjoint portions of the

heap, then they cannot interfere, as shown by this rule:

{P1}C1{Q1} {P2}C2{Q2}
{P1 ∗ P2}C1 ∥ C2{Q1 ∗Q2}

A key observation from the development of CSL is that separation logic specifications express a

notion of ownership. Since assertions hold on disjoint parts of the heap, if we have a points-to

assertion p 7→ v in the specification of a thread, this is equivalent to the thread having exclusive

ownership of p, since it could not be composed with another thread that has p 7→ v′ in its specifi-

cation. Comparing to rely-guarantee reasoning, having exclusive ownership is like having a rely

that requires the owned memory to stay the same, and a guarantee that allows the owned mem-

ory to be changed arbitrarily. Using this parallel composition rule, we can verify the same parallel

program as the previous section with a far more succinct specification:

{x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0}x := 1 ∥ y := 2 ∥ z := 3{x 7→ 1 ∗ y 7→ 2 ∗ z 7→ 3}

There has been much work building on the original concept of separation logic. Many works

extended separation logic with additional features, and some used the notion of “fictional” sep-

aration, where separating conjunction did not have to mean disjointness of heaps, but could be

some more abstract notion of separateness [DGW10; Din+13]. The theory of Heapster falls into

this category of “fictional” separation. In our approach, which we will describe in Chapter 4, we

use rely-guarantee permissions as the semantic interpretation of types similar to separation logic

assertions. By using the rely and guarantee relations, we can express fine-grained properties, re-

sulting in very different definitions and intuitions of separateness and the separating conjunction

than the standard ones.

14

2.3. Interaction Trees

To represent programs in the Coq formalization of the Heapster theory, we will use interaction

trees. Interaction trees [Xia+19] are a data structure in Coq [Bar+97] for representing effectful and

possibly nonterminating programs. They come with a library of equational reasoning and other

lemmas for manipulating ITrees. By using Coq’s extraction feature to extract ITrees to code in other

functional languages, ITrees are also executable, allowing for testing and linking with other code.

For our purposes, they are a good medium between a shallow embedding where programs are

represented as functions in Coq, and a deep embedding where programs are represented purely

syntactically. While Coq functions are easily executable and easy to work with in proofs, they are

also required to be pure and terminating. On the other hand, syntactic representations can be used

to express any program, but the semantics of programs must be defined from scratch.

An ITree represents a tree containing interactions with the environment, which we call events.

Depending on how the environment responds to these events, the computation can vary, resulting

in the branching structure of the tree. For example, there could be an event to request for a natural

number from the environment. Depending on how this event is used, it could represent getting

an input from a theoretical user, or getting a number from some source of randomness, or any

number of other interpretations.

Formally, the type of an ITree is itree E R. The parameter E is the event signature, a type that

captures the possible events in an ITree. This parameter is indexed by the type of response each

event expects from the environment. For instance, the previous example of an event which gets a

natural number from a user would have the type E N to represent the fact that it expects a value

of type N back from the environment. The parameter R is the type of leaf values in the tree, which

represent the values returned when the program terminates.

The tree structure of an ITree is defined by three kinds of nodes. First, ret r is a leaf node which

represents a program terminating with a value of type R. Second, vis e k represents a visible event

e of type E X for some response type X and a continuation k of type X → itree E R. These nodes

15

represent communication with the environment. Once the environment responds with a response

x : X, it continues with the ITree k x. It is this continuation which induces the branching structure

of an ITree. Lastly, ITrees can contain a τ t node, a silent step of computation followed by another

ITree of type itree E R. This allows us to represent nonterminating programs, like the diverging

program spin
def
= τ spin. To model these infinite behaviors, ITrees are defined as a coinductive data

type in Coq.

ITrees have many useful properties for modeling programs. For one, they are a shallow embed-

ding, so ITrees inherit features from Coq, like variable binding, pattern matching, and control flow.

The type itree E also forms a monad, where the return operation is simply ret and a bind operation

t >>= k. This bind sequences the ITree t followed by the continuation k, replacing each ret r leaf

in t with the subtree k r. We will sometimes write bind using the notation x ← t; k x in place of

t >>= (λx. k x), omitting the x ← portion if k does not use x. Furthermore, ITrees can model itera-

tion using an iter combinator of type (A → itree E (A + B))→ A → itree E B. The first argument

is the body of the loop, which takes a value of type A and either returns a value of type B to signal

that iteration is finished, or returns another value of type A to signal that iteration should continue

with this new value. These values of A are the only things that change between iterations, and so

we will call them iteration variables. Applying the iter operation as iter body then takes an initial A

to start this process, and produces the resulting ITree, which—if it does not diverge—will return a

final value of type B.

As presented so far, ITrees contain uninterpreted events, but events can also be given semantics. The

ITree library provides a way to interpret events in an ITree using a handler of type E X → M X

for some monad M. For example, state events can be handled into a state monad, and interpreting

the state events using this handler removes the original state events from the ITree and gives them

semantics via the state monad transformer.

Heapster uses a variant of ITrees called ITree specifications [Sil+23b] to represent the extracted

functional specifications, which was used in the example in Figure 1.2. That example used a fixed

point combinator to represent recursive functions, which is supported in both ITrees as well as

16

ITree specifications, though we do not use it in the theory of Heapster presented in this disser-

tation. Instead of using recursion, we represent such programs using iter. For the example in

Figure 1.2, rather than making a recursive call using the x and l variables, we instead iterate,

using those variables as iteration variables.

The theory of Heapster uses ITrees and Heapster itself uses ITree specifications, incompatible vari-

ants of ITrees. One future direction would be to connect the theory to the extracted specifications

from Heapster by changing the formalization to represent specification programs as ITree speci-

fications. By switching to the same data structure, it would be possible to implement something

similar to Heapster in Coq using the typing rules we prove in this dissertation, giving us fully-

verified end-to-end guarantees, and also giving us access to the infrastructure Heapster provides

for verifying those specifications. This would also let us connect Heapster to previous work using

ITrees to model programs written in various programming languages [Zak+21; Zha+21; Sil+23a],

and to extract specifications from those programs.

17

CHAPTER 3

Related Work

Part of this chapter is adapted from work previously published as Paul He, Eddy Westbrook, Brent

Carmer, Chris Phifer, Valentin Robert, Karl Smeltzer, Andrei Ştefănescu, Aaron Tomb, Adam

Wick, Matthew Yacavone, and Steve Zdancewic. “A Type System for Extracting Functional Spec-

ifications from Memory-Safe Imperative Programs.” In: Proc. ACM Program. Lang. 5.OOPSLA

(Oct. 2021) [He+21]. I was the primary author and the primary contributor of the theoretical

component of the paper, the focus of this dissertation.

This chapter explores previous work related to this dissertation. These topics are categorized

into several main areas. First, we discuss other semantics of separation logics, which is the same

methodology we use to prove soundness of the Heapster type system. Second, there are other

systems that extract specifications from Rust code, like Heapster. We compare the soundness

proofs of these systems with our theory of Heapster. Third, rely-guarantee reasoning has been

used in combination with separation logic before, and previous approaches resemble our use of

rely-guarantee permissions. Lastly, the permission-based approach of Heapster has been used in

other type systems, and we compare their soundness results with our approach.

3.1. Semantics of Separation Logic

The work presented in this dissertation can be viewed as the semantic model of a separation logic,

rather than a type system. The approach of using semantic type soundness is the same, and the

Heapster type system blurs the line between type systems and program logics due to the expres-

sivity of its types. In this section, we compare our semantics using rely-guarantee permissions to

the semantics of other separation logics.

Traditionally, the assertions of separation logics are modeled as predicates over heaps, and sep-

arating conjunction splits the heap into disjoint pieces [Rey02]. As the field of separation logic

grew, more complex separation logics sprang up, each with their own semantics. These logics

18

typically represent the semantics of their assertions as predicates in increasingly complex logics,

or by adding more complex representations of state. While early work used the heap as the state,

work on “fictional separation” [JB12; Sie+15] generalized the state into user-defined types, where

separation no longer necessarily represented physically splitting the heap. This allowed for more

flexible notions of separation that can reason about the splitting of logical resources.

During this time there was an explosion in the number of different separation logics, each with

their own implementations and semantics [Par10]. There was work to unify separation logics

in a common framework, which today has emerged as Iris [Jun+15], an influential concurrent

separation logic framework implemented in Coq. The logic is very expressive, containing higher

order state and impredicative assertions among other features, and has been used to implement

many other separation logics.2 Their semantics continues to use predicates, but in a far more

complex way, crucially using step-indexing to handle the use of higher-order state in Iris. One

significant related project built using Iris is Rustbelt [Jun+17], which formalizes the semantics

of Rust and formally proves the safety guarantees of the language. Similar to our approach in

Chapter 7, they formalize lifetimes and borrowing by defining the semantics of borrowed types

with logical relations in the Iris logic. This more complex approach is required to fully support

Rust types, while we focus on the simpler uses of lifetimes in Heapster.

In this dissertation, we use a different semantic domain from other separation logics. The Heap-

ster type system can be viewed as a separation logic, albeit one without the focus on separation

logic connectives like the separating implication that most other separation logics feature. As we

focus on Heapster, where automation is the goal, such connectives are not needed, though we

still are able to define the separating implication operation, −∗, with rely-guarantee permissions.

In this view of Heapster as a separation logic, our semantic model is not predicates over states,

but rely-guarantee permissions over states, which use binary relations. This has the benefit of

being able to encode powerful rules and features using rely-guarantee, but hiding the complexity

of rely-guarantee from the user-facing type system or logic. By using rely-guarantee permissions

2For a full list of papers using Iris, see https://iris-project.org/.

19

https://iris-project.org/

as an “implementation” of separation logic, we avoid the main downside of using rely-guarantee

reasoning as a user, the lack of modular reasoning. This model also uses “fictional” separation by

default, since rely-guarantee permissions do not have physical separation of heaps built in to their

definitions. As such, rely-guarantee permissions should be able to act as a semantics for simple

separation logics close to the original definition of Reynolds [Rey02].

Another clear difference between the theory of Heapster and most separation logics is the pres-

ence of a specification program in the typing relation. Relational separation logic [Yan07] is one

variant of separation logic that resembles our typing relation in that it is also used to relate two

programs. Unlike Heapster, this work uses separation logic to relate two pointer-manipulating

programs in the same language, rather than an imperative program and a functional program.

This logic can be used, for example, to show that two implementations of the same algorithm

are equivalent. Relational separation logic uses a fairly standard heap semantics of assertions,

but with two heaps for the two programs in the relation. Later work on similar relational logics

in Iris [Gäh+22] or using rely-guarantee reasoning [LFF12] extend this idea to more expressive

languages with concurrency. These logics are based around a simulation relation, similar to the

bisimulation relation at the heart of the theory of Heapster. The goals of these works differ from

that of Heapster, however. Both of these logics are aimed at proving the correctness of program

transformations for concurrent programs, which results in more complex logics where verification

is not automatic.

3.2. Extracting Rust to Functional Specifications

Several works use the same idea as Heapster: that memory safe Rust programs are equivalent to

functional programs. The proofs of soundness for these approaches vary, and all differ from the

approach we take with rely-guarantee permissions, since none use separation-logic reasoning.

An early work in this area, Electrolysis [Ull16], translates Rust programs to functional programs

in the Lean proof assistant [Mou+15]. They represent functional programs using a monad for non-

termination, much like our use of ITrees. To translate Rust references, they use lenses [Fos+07] to

represent them as a part of the original mutable variable. This has some limitations, like not being

20

able to represent mutable references within larger structures or references modified in loops. The

translation process directly maps Rust features to Lean features, and does not have a soundness

proof.

The Aeneas system [HP22] also uses the knowledge from the guarantees given by Rust types to

extract functional programs from Rust. This work extracts Rust to a generic lambda calculus term

in F∗ [Swa+16], but could be represented in any language or proof assistant. Due to this rep-

resentation, the functional programs cannot represent nontermination, and requires proof about

termination or a fuel parameter for recursive functions. Borrowing is at the core of this work. The

translation from Rust programs contains a backward function, which describes the effect of ending

a borrow and updating the borrowed variable. This is similar to the lifetime types in Heapster,

which represents a borrow on the specification side as a function that returns all the borrowed

values, which can only be applied once we end the lifetime. The treatment of these types in the

theory of Heapster is slightly different, as we describe in Section 7.6.

Ho, Fromherz, and Protzenko [HFP24] prove the soundness of part of the Aeneas approach. First,

they focus on the internal representation of Rust in Aeneas, which has some unusual features, like

not having an explicit heap. This paper relates this representation to a more traditional language

closer to Rust, with a standard heap model. The paper then proves that the next step of Aeneas,

going from this internal representation to a symbolic semantics is sound: that the concrete se-

mantics refine the symbolic semantics. The final step of the Aeneas tool, the translation from the

symbolic semantics to the lambda term, is not yet proven to be sound.

RustHorn [MTK20] reduces Rust programs to constrained Horn clauses (CHCs), which erases

memory operations like Heapster. Properties that one wants to verify, like functional correctness,

can then be encoded in the CHCs, and existing CHC solvers can be used to solve the resulting

clauses. To handle borrows, they use the notion of prophecy variables to refer to the future value

of the variable when the borrow ends. Soundness of this reduction is proven by a bisimulation

between the original programs to the CHC representation. Later work on RustHornBelt [Mat+22]

combines RustHorn with the RustBelt project. This work adds the extracted CHC specifications

21

of RustHorn to RustBelt, resulting in a similar typing judgment to ours, where an imperative

program is related to a specification using CHCs. Nakayama et al. [Nak+24] extend RustHorn in

a different direction, and adds fractional permissions [Boy03], allowing for both the borrowing

and the fractional splitting of references. They show that this addition increases the expressivity

of RustHorn, which suggests that fractional permissions may be useful in our type system as

well. The soundness of this extension is proved in a similar way as RustHorn, using a simulation

relation.

3.3. Combining Rely-Guarantee and Separation Logic

Since the first introduction of concurrent separation logic, there has been a desire to extend it to

support more fine-grained concurrency. Since rely-guarantee allows for the expression of fine-

grained changes through its relations, there are several works that add rely-guarantee reasoning

to concurrent separation logic, such as RGSep [VP07], SAGL [FFS07], LRG [Fen09], and deny-

guarantee [Dod+09]. Most of these logics prove soundness by adding rely-guarantee relations

to a more standard separation logic semantics. SAGL, however, proves soundness of its logic

syntactically, rather than the more standard semantic approach.

Rather than combining rely-guarantee and separation logic directly, rely-guarantee permissions

implement a separation logic using rely-guarantee reasoning, allowing for a simpler interface.

While we do not yet support concurrent code with rely-guarantee permissions (see Section 8.1

for a discussion of future work), once we do, it should be possible for rely-guarantee permissions

to act as a semantics for logics like these due to its ability to represent both rely-guarantee relations

and separation logic assertions.

Interestingly, Dodds et al. consider a similar definition to ours for the separating conjunction of

rely-guarantee relations, but they discard the idea since the definition is not cancellative. Cancella-

tivity is defined as the property that if x ∗ y = x ∗ z, then y = z. This property is required to form

a separation algebra [COY07], which they used as the basis of the soundness of their work. Later

work generalized to models that do not have the requirement of cancellativity [BV14], so this sug-

gests that there is no inherent barrier in using our approach with rely-guarantee permissions for

22

other systems like deny-guarantee.

3.4. Permission-Based Type Systems

This section discusses some related work in using types to represent notions of permission or capa-

bility to control aliasing and ownership, some of which use rely-guarantee reasoning as well. Most

of these type systems are proved sound using a syntactic approach, with progress and preserva-

tion theorems [WF94]. Our approach using semantic type soundness is useful if the type system

is updated. If additional types are added that do not require changes to the semantic model, then

existing proofs for typing rules remain the same. For example, this is the case when we add life-

time types in Chapter 7. Additionally, having a semantic model of types can be useful for design

intuitions, rather than having to rely on the typing rules as the only meaning of the types in the

type system.

Ownership types [CPN98] are an early instantiation of the idea of using types to represent owner-

ship information in an object-oriented setting. These types are only used to control aliasing, and

do not represent permissions as our work and later work does, where these permissions can be

transferred and change during execution.

As separation logic was developed and became more popular, ideas of ownership transfer and

permissions became more widespread. Two projects, Mezzo [PP13] and Asynchronous Liquid

Separation Types [KMV15], both use type systems with some element of permission reasoning

inspired by separation logic. These works build type systems for realistic functional languages,

rather than existing imperative ones.

Nanevski, Morrisett, and Birkedal [NMB08] present a type theory that includes Hoare logic spec-

ification in types, similar to the theory of Heapster. They further show how separation logic con-

nectives can be defined in the system. This system is a dependent type theory where much of the

emphasis is put on generality, and typechecking is undecidable—whereas Heapster focuses on

automation.

Gordon, Ernst, and Grossman [GEG13] uses rely-guarantee relations in a similar way to the the-

23

ory of Heapster, but exposed to the programmer as part of a type system. Like rely-guarantee

permissions, types for references carry a predicate (akin to our precondition), and rely and guar-

antee relations. This system harnesses much of the power of rely-guarantee reasoning, allowing

programmers to control aliasing and to verify fine-grained concurrent code, at the cost of addi-

tional complexity for users. Gordon, Ernst, and Grossman prove soundness in two orthogonal

ways: first, a syntactic approach using progress and preservation, and second, an embedding into

Views [Din+13], a predecessor of the Iris framework. We aim to hide the complexity of using rely-

guarantee by using it only to “implement” a simpler interface without the possible complexity of

unrestricted rely and guarantee relations.

Militão, Aldrich, and Caires [MAC14] present a similar type system to that of Gordon, Ernst, and

Grossman where aliasing is controlled using rely-guarantee relations. Like our work, they support

a temporal splitting of resources. Soundness of their type system is proven using a syntactic

approach, using progress and preservation.

RefinedC [Sam+21] uses a type system that combines ownership types with refinement types to

express both ownership information and invariants on data types for C code. Since it verifies

programs directly, these types act like specifications, describing the behavior of these C functions

in detail using the refinement types. Once types are provided, RefinedC automatically uses the

typechecking process to verify programs against their type specifications, resulting in a fully ver-

ified proof in Coq. Crucially, the type system is proved sound via a semantic typing approach,

where typing rules are proved as lemmas in Iris. The design of the toolchain ensures that the in-

put to typechecking is in a fragment of Iris where proof search is possible without backtracking.

The typechecking process then applies this search process, directly applying the typing rules that

were proven in Coq, ensuring the entire process is verified.

One difference with Heapster is that since Heapster extracts specifications instead of verifying the

code directly, Heapster types are far less complex than those of RefinedC. Another major differ-

ence is that in our work, the verification tool, Heapster, is not formally connected to the proofs

presented in this dissertation. That is, if we were to take RefinedC’s approach, then the theory

24

of Heapster presented in this dissertation would be the verification tool, rather than the separate

Heapster tool. As mentioned in Section 2.3, this is a possible future direction for our work, where

we can directly use the typing rules to typecheck programs represented by ITrees, or to build more

sophisticated tooling in Coq, as RefineC does, to handle real code.

25

CHAPTER 4

Rely-Guarantee Permissions

Part of this chapter is adapted from work previously published as Paul He, Eddy Westbrook, Brent

Carmer, Chris Phifer, Valentin Robert, Karl Smeltzer, Andrei Ştefănescu, Aaron Tomb, Adam

Wick, Matthew Yacavone, and Steve Zdancewic. “A Type System for Extracting Functional Spec-

ifications from Memory-Safe Imperative Programs.” In: Proc. ACM Program. Lang. 5.OOPSLA

(Oct. 2021) [He+21]. I was the primary author and the primary contributor of the theoretical

component of the paper, the focus of this dissertation.

Rely-guarantee permissions are the central concept of this dissertation that will be used to build

up a semantic description of the types of the Heapster type system. This chapter will introduce

the definition of rely-guarantee permissions and some important results and related definitions.

At its core, a rely-guarantee permission represents a description of how a program is permitted

to behave. In this dissertation, a program is thought of as holding a permission, which can evolve

throughout execution of the program. In the literature, the term permission is sometimes used to

refer specifically to Boyland’s fractional permissions [Boy03], but we use it as the broader concept

of controlling the behavior of programs, sometimes called a capability. This concept has been used

in a wide variety of settings, and an overview of some of these works can be found in the survey

paper by Sadiq, Li, and Ling [SLL20].

Figure 4.1 shows an example of a program that allocates a new variable then checks whether the al-

location succeeded. The gray boxes show an example of the permissions that could be held at each

point in the program in order to validate the program as a whole. First, the program would need

a permission that allows it to allocate memory in order to perform the allocation. After allocation,

we would obtain a permission that represents the ability to write to x, as long as the allocation was

successful. Depending on the result of the check, we then either get a permission allowing write

access to x, or no new permission at all in the case that the allocation was unsuccessful.

26

Allocation permission
alloc x;
Allocation permission + new variable permission for x
if (x) {
Allocation permission + write permission for x
x := 1;

Allocation permission + write permission for x
} else {
Allocation permission
}

Figure 4.1: Example permissions for a program that allocates new memory.

These are not the only possible permissions for this program. For example, since we do not allocate

more memory after the first allocation, it would be possible to drop the allocation permission after

the allocation. After performing the write to x, we could also drop its write permission.

As we will see in this chapter, rely-guarantee permissions describing different portions of a pro-

gram can be composed into one larger one for the entire program. In this chapter we will introduce

some of the intuitions we use for using permissions with programs. However, the formal connec-

tion between permissions and programs will only be defined in Chapter 5.

4.1. The Rely-Guarantee Permission Lattice

Definition 4.1 (Rely-guarantee permission). Given state type S, we define a rely-guarantee permis-

sion over S as a tuple π = (R, G, P) where

1. R and G are preorders on S,

2. P is a predicate on S,

3. P is stable under R, i.e. if (x, y) ∈ R and x ∈ P then y ∈ P.

These definitions follow closely from the rules of rely-guarantee reasoning, as described in Sec-

tion 2.1.

The guarantee G specifies what state changes this permission allows the holder to perform. The

27

rely preorder R specifies the state changes permitted by other permissions that this permission

can tolerate. This is useful for determining what permissions can be held at the same time, like

how rely-guarantee reasoning is used to determine which threads can be run concurrently. The

R and G relations are both preorders. The reflexivity of the rely means that a permission always

tolerates code that makes no changes. For the guarantee, it means that a program is always al-

lowed to make no changes. They also should both be transitive, meaning that tolerated changes

and allowed changes can be combined sequentially. These two names should be interpreted from

the perspective of the permission holder. Changes to the state that others make can be relied upon

to stay within R, and changes that we make are guaranteed to stay within G.

The final component P is a precondition that describes the assumptions this permission makes

about the state. If a program holds a permission, then its precondition should be true as long as

the permission continues to be held. Item 3 in the definition means that any such assumptions

cannot be violated by changes tolerated by this permission.

In the case of rely-guarantee reasoning, the setting was concurrent programs and “other code”

referred to other threads. For rely-guarantee permissions, the intuitions are slightly different.

While rely-guarantee reasoning uses rely and guarantee relations to specify the interference of

a thread, interference can be generalized to sequential code as well. In fact, one of the earliest

uses of the term interference was by Reynolds [Rey78], who used it to refer to any code that can

have global effects, such as aliasing, in the context of general imperative programs. The theory of

Heapster uses rely-guarantee permissions in this way to specify the interference of permissions,

and permissions describe how programs, or parts of programs, can behave. As we will see in

Section 4.2, permissions describing parts of programs can be combined, and this will also relate to

how threads are combined in rely-guarantee reasoning.

As an example of a permission, suppose the state only contains a single integer. Then we can

define a rely-guarantee permission over Z that permits this number to increase, while taking an

28

argument b, a lower bound of the value in the state:

π↑(b)
def
= (≤,≤, { n | b ≤ n })

The rely above says that others are allowed to increase the state value, and the guarantee says that

we—as the permission holder—are able to as well. The precondition says that we expect to start

in a state where b is indeed a lower bound. Additionally, it is stable under the rely—any increases

to the state would not change the fact that b is a lower bound. The rely of π↑(b) is the weakest

possible one for this stability requirement to be true. We could strengthen the rely (for example

to =) and retain stability, but this would just restrict the changes that this permission can tolerate

without any upside.

We use the notations Rπ, Gπ, and Pπ to denote the respective components of permission π. When

given a collection of permissions π1, π2, . . . , we will overload this notation and use Ri, Gi, and Pi

to refer to components of the i-th permission. We will also write permS as the set of all permissions

over a state type S.

A crucial operation is to order permissions:

Definition 4.2 (Permission ordering). Given permissions π1 and π2 over S, we define the permis-

sion ordering π1 ⊑ π2 to hold if R1 ⊆ R2, G1 ⊇ G2, and P1 ⊆ P2.

Intuitively, a smaller permission is more powerful. Its guarantee is bigger and more permissive,

allowing for more state updates than a larger permission. This greater power also allows it to

make more “demands”—the smaller permission has a smaller, stricter precondition and rely.

For example, if we had another permission π↕(b) similar to π↑(b) but that also allowed decreasing

the number in the state, then its guarantee would be Z×Z and its other components would be

the same as π↑(b):

π↕(b)
def
= (≤, Z×Z, { n | b ≤ n })

29

This permission is smaller than π↑(b) since it has a larger guarantee. However, the use of the

argument b as a lower bound is slightly different with this permission. Since its guarantee allows

the state to either increase or decrease, b may no longer be a lower bound after a state update,

unlike the stronger guarantee of π↑(b).

As another example, consider the permission πEX↕(b) which has the same guarantee as π↕(b),

but has a stronger rely of =. That is, nobody else is allowed to change the state, allowing this

permission to represent exclusive access to it. We can also strengthen the precondition to { n | b =

n }, which allows the argument b to represent the actual value of the state, rather than just a lower

bound. Note that this was not possible with the previous π↑ and π↕ permissions, since their relies

would not have been stable over this precondition.

πEX↕(b)
def
= (=, Z×Z, { n | b = n })

Putting these examples together, we have πEX↕(b) ⊑ π↕(b) ⊑ π↑(b). Permissions will of-

ten change throughout computation. One way they can change—though not the only way—is

through weakening, transforming stronger permissions into weaker ones via ⊑. For example, if

we held a π↕(b) permission but did not need the ability to decrease the state, we could give up

that ability by weakening it into a π↑(b) permission.

The π↕(b) and πEX↕(b) permissions also show the reason why the precondition is not required to

be stable under the guarantee—the precondition represents the current assumptions on the state,

and can change as the state changes. In this case, the guarantees allow the value of the state to

change, which may change whether that value still satisfies the precondition.

Naturally, we can show that ⊑ is a preorder:

Lemma 4.1. ⊑ is reflexive and transitive.

Further, with this ordering on permissions, (permS,⊑) forms a complete lattice.

30

The meet is defined as

π1 ⊓ π2
def
= (R1 ∩ R2, (G1 ∪ G2)

∗, P1 ∩ P2),

with the usual properties of a meet:

Lemma 4.2.

• The meet is a lower bound: π1 ⊓ π2 ⊑ π1 and π1 ⊓ π2 ⊑ π2.

• The meet is the greatest lower bound: for any π where π ⊑ π1 and π ⊑ π2, π ⊑ π1 ⊓ π2.

The meet of permissions π1 and π2 represents the stronger permission that is the conjunction of

both. In its guarantee, it can do anything that either of π1 and π2 can do. To ensure that it is still

a preorder, we must use the reflexive and transitive closure. Its rely and preorder are more strict

than either of its parts—requiring that both the relies and preorders of π1 and π2 hold.

The dual operation of meet is the join. It is defined as

π1 ⊔ π2
def
= ((R1 ∪ R2)

∗, G1 ∩ G2, P1 ∪ P2 ∪ { y | ∃x, (P1(x) ∨ P2(x)) ∧ (R1 ∪ R2)
∗(x, y) })

and also has the usual properties of a join:

Lemma 4.3.

• The join is an upper bound: π1 ⊑ π1 ⊔ π2 and π2 ⊑ π1 ⊔ π2.

• The join is the least upper bound: if π1 ⊑ π and π2 ⊑ π, then π1 ⊔ π2 ⊑ π.

The join of permissions π1 and π2 represents a weaker and more restricted permission. Its guaran-

tee only allows for updates that are allowed by the guarantees of both π1 and π2. Its rely tolerates

any changes that either π1 or π2 can tolerate, closed under reflexivity and transitivity. Its pre-

condition is similar, holding as long as the preconditions of either π1 or π2 hold. To satisfy the

requirement that it is stable under the rely, the precondition also holds on states that start from

one of the preconditions of π1 and π2, and then are updated in accordance to the rely.

31

We presented these operations as binary operators, but they could also be generalized to opera-

tions over any finite set of permissions once we determine the top and bottom elements. These

represent the meet and join, respectively, of the empty set. The top element is

π⊤
def
= (S× S,=, S),

and the bottom element is

π⊥
def
= (=, S× S, ∅).

The top element π⊤ is the weakest permission, permitting no changes to be made to the state using

its guarantee. However, its rely can tolerate any change, and its precondition also always holds.

This leads to the intuition that π⊤ is inert and harmless, equivalent to there being no permission at

all. Dually, π⊥ is the most powerful permission, permitting everything using its guarantee, which

contains all possible state updates. However, its rely and precondition are maximally restrictive.

The rely permits no changes, and the precondition never holds, so this permission would not be

usable in any actual state.

4.2. Coexistence

As hinted at earlier, not all permissions can coexist, and whether they can depends on the rely and

guarantee components of the permissions. We define this notion following from the PAR rule of

rely-guarantee reasoning, which gave a condition for when threads can safely coexist.

Definition 4.3 (Separate permissions). Given permissions π1 and π2 over S, we say they are sepa-

rate, written π1 ⊥ π2, when G1 ⊆ R2 and G2 ⊆ R1.

Two permissions are separate if the possible updates of each are tolerated by the other. While

separateness does not explicitly use the preconditions of these permissions, the stability require-

ment for permissions ensures that updates allowed by one permission does not interfere with the

precondition of the other. For example, it is true that π↑(b) ⊥ π↑(b′), meaning that these per-

missions can coexist, and any changes they permit would maintain b and b′ as lower bounds for

32

the current state. On the other hand, π↑(b) ̸⊥ πEX↕(b′) since the changes allowed by the π↑(b)

permission would violate the rely of πEX↕(b). If the code holding π↑(b) did increase the state, this

would also break the precondition of πEX↕(b), that b is the current value of the state. This validates

our intuition that πEX↕ represents exclusive access, so it should not be able to be combined with

another permission which allows write access to the state. It is not separate from any permission

that allows the state to change, effectively ensuring that it can be the only permission with such a

guarantee.

As another validator of our intuitions, we can prove that the π⊤, the inert, weakest permission,

can coexist with any other permission:

Lemma 4.4. π⊤ ⊥ π for any π.

We stated earlier that permissions should be able to change during execution by weakening. One

crucial property of separateness that relates to this is that separateness is upward-closed:

Theorem 4.5. If π1 ⊥ π2, π1 ⊑ π′1, and π2 ⊑ π′2, then π′1 ⊥ π′2.

This theorem says that if we have two permissions that can already coexist, this coexistence is

maintained if we substitute either permission with a larger one. This supports the idea that larger

permissions are “weaker”, and that replacing permissions with weaker ones during execution

should be permitted. A larger permission, which cannot do as much (via its guarantee) and can

tolerate more (via its rely) can always coexist with existing permissions.

Using separateness, we can now define the separating conjunction of separation logic to combine

permissions:

Definition 4.4 (Separating conjunction). Given permissions π1 and π2 over S, we define the sepa-

rating conjunction of π1 and π2 by:

π1 ∗ π2
def
= (R1 ∩ R2, (G1 ∪ G2)

∗, P)

33

where P =

P1 ∩ P2 if π1 ⊥ π2

∅ otherwise.

If the two permissions are separate, then π1 ∗ π2 is exactly the same as π1 ⊓ π2, the conjunction

of both permissions. If they are not separate, then π1 ∗ π2 has an empty precondition, resulting in

the permission being unusable for any actual code. We will always use ∗ to combine permissions,

rather than the meet, in order to ensure that permissions are compatible.

This operation is analogous to combining two threads using the PAR rule from rely-guarantee rea-

soning. Whereas rely-guarantee reasoning uses the interference described by the rely and guar-

antee relations to determine when programs are safe to compose using parallel composition, rely-

guarantee permissions use interference to determine when permissions, describing the capabilities

of fragments of programs, are safe to compose. This notion of composition is not limited to par-

allel composition, and is more general. As guarantees are combined using the reflexive-transitive

closure of the union of both guarantees, this permits any interleaving of state changes allowed by

either permission. This supports sequential composition as well as parallel composition. While

Heapster only supports sequential code, handling concurrency is a possible future direction, as

we will discuss in Section 8.1.

We can prove a few basic properties of the separating conjunction:

Lemma 4.6. The ordering ⊑ induces an equivalence relation, which we will write as ≡ and is de-

fined as π1 ≡ π2 if π1 ⊑ π2 and π2 ⊑ π1. Separating conjunction is associative and commutative

with respect to ≡:

• (π1 ∗ π2) ∗ π3 ≡ π1 ∗ (π2 ∗ π3).

• π1 ∗ π2 ≡ π2 ∗ π1.

The following monotonicity result is important to allow parts of the overall permission to change

independently.

34

Lemma 4.7. If π1 ⊑ π′1 and π2 ⊑ π′2 then π1 ∗ π2 ⊑ π′1 ∗ π′2.

The proof of the monotonicity of ∗ relies crucially on the fact that separateness is upward-closed.

Finally, we can show that ∗ always results in a smaller permission.

Lemma 4.8. π ∗ π′ ⊑ π.

While this property of ∗ is easy to prove due to its similarity to the meet, it shows that conjoining

a new permission onto an existing one always results in a smaller overall permission. Since per-

missions can always be weakened, this property also implies that rely-guarantee permissions are

used to model an affine separation logic, where assertions can be dropped. This is in contrast to a

linear logic, where discarding permissions is disallowed. The affine logic has the benefit of allow-

ing us to model garbage collected languages, rather than just languages where memory must be

explicitly deallocated [Cha24].

4.3. Permission Changes

While weakening permissions throughout execution using ⊑ is useful, it is not always sufficient

for updating permissions. A bigger permission has a bigger precondition, meaning that it is a

weaker assumption about the state. However, the state can change arbitrarily during computation,

which is not captured by this ordering. For example, if we held the permission πEX↕(0) then

updated the state to 1, we must change the permission we hold to πEX↕(1) so its precondition

matches the new value of the state. This precondition change from {0} to {1} is not permitted by

⊑, so we will need something different.

When updating permissions, a permission for part of the code should not affect other permissions

when it changes, and keep all separateness properties valid. We can try to use this this idea of not

affecting other permissions as the definition of how permissions can change:

Definition 4.5. Permission π2 is at least as separate as π1, written π1 ⇝ π2, if π1 ⊥ π implies

π2 ⊥ π for all π.

35

Naturally, since this definition is used to describe how permissions can change, no change is al-

ways permitted and changes can be combined:

Lemma 4.9. ⇝ is reflexive and transitive.

The following theorem about⇝ show that it is quite similar to ⊑, except that⇝ does not impose

any ordering on the preconditions of permissions.

Theorem 4.10. π1 ⇝ π2 if and only if R1 ⊆ R2 and G1 ⊇ G2.

As a corollary, π1 ⊑ π2 implies π1 ⇝ π2, so⇝ generalizes our earlier notion of how permissions

can change. Using this theorem, we can show that πEX↕(0) ⇝ πEX↕(1), since their relies and

guarantees are the same.

The following lemma also shows that we can change only part of a larger permission formed by

∗, similarly to how monotonicity for ∗ was used:

Lemma 4.11. If π1 ⇝ π2 and π′ ⊥ π1, then π1 ∗ π′ ⇝ π2 ∗ π′.

Chapter 5 will formally present how permissions can change through execution and how ⇝ is

used.

4.4. Permission Sets

While ∗ allows us to represent conjunction, a major issue with permissions as we have defined

them so far is how to represent disjunction. Disjunction is crucial for modeling permissions with

multiple possibilities like possibly-null pointers, which are then refined through control flow in

the program. Existential quantification can be considered a form of infinitary disjunction, and is

also very desirable for our purposes. For example, suppose we want to use π↑ but do not yet have

any information about the state. Then no single value of b for π↑(b) will be appropriate for all

possible states, since it may not be a lower bound for the current value. Existential quantification

to allow a permission to be defined as ∃b∈Zπ↑(b) would solve this issue.

While using a meet-like operation such as ∗ for the conjunction of permissions works, no anal-

36

ogous operation works for disjunction. Using the dual operation to meet, join—or something

similar— does not work for our purposes. We wish to reobtain one of many possible disjunctive

possibilities later, which is not possible with an operation like the join, which is “lossy”. By inter-

secting the guarantees as is done by the join, we lose information and will be unable to revert to

one of the permissions that make up the disjunction.

For example, if we represent the disjunction of π↑(b) and π↕(b) as π↑(b) ⊔ π↕(b), the guarantee

of this permission would be ≤, since the join takes the intersection of the two guarantees. If we

later wish to reobtain π↕(b), we are unable to as we have “lost” the guarantee of π↕(b). Trying

to change the permission using ⇝ only allows guarantees to become smaller, so we cannot go

from ≤ to the larger guarantee of π↕(b), which is Z×Z. For this notion of disjunction, we need

something different.

Our solution is to represent disjunctions as sets of permissions, which represent the set of possible

permissions that might be currently held. In place of using a single rely-guarantee permission, we

will instead use sets of permissions.

Definition 4.6 (Permission sets). A permission set over S is a downward-closed set of permissions,

that is, a subset Π ⊆ permS such that π2 ∈ Π and π1 ⊑ π2 implies π1 ∈ Π. We write PermsS for

the set of all permission sets over S. We overload the notation to define the permission set ordering

Π1 ⊑ Π2 as Π1 ⊆ Π2.

Like with permissions, (PermsS,⊑) forms a complete lattice, where we write False = ∅ for the

least element and True = permS for the greatest element. Join and meet are defined as union and

intersection, respectively, and are written as ⊔ and ⊓.

For convenience we use the notation [π] to represent the smallest permission set containing π.

Such a permission set represents a single permission, even though there are other permissions in

the set. The largest element (or elements) of the set can be seen as the permission (or permissions)

that the set represents.

[π]
def
= {π′ | π′ ⊑ π }

37

With permission sets, we can now use the join to handle the case from earlier, where no specific

b was appropriate for π↑(b). We can use a permission set Π↑ to represent this instead. First, let’s

define a permission set for when we do know a lower bound b:

Π↑(b)
def
= [π↑(b)] = {π | π↑(b) ⊑ π }.

Then the join serves as existential quantification:

Π↑
def
=

⊔
b∈Z

Π↑(b) =
⊔

b∈Z

[π↑(b)] = {π | π ⊑ π↑(b) for some b ∈ Z }.

This set contains all the possible lower bounds on the value, as well as all the smaller, stronger

permissions, and with one of them being “actually” held by the user. Similarly, we can define the

analogous permission sets for π↕ and πEX↕:

Π↕ =
⊔

b∈Z

Π↕(b) =
⊔

b∈Z

[π↕(b)]

ΠEX↕ =
⊔

b∈Z

ΠEX↕(b) =
⊔

b∈Z

[πEX↕(b)]

From the previous result that πEX↕(b) ⊑ π↕(b) ⊑ π↑(b) and the downward-closure property of

permission sets, this result lifts to the permission set level:

ΠEX↕ ⊑ Π↕ ⊑ Π↑

During typechecking, we often wish to transform permission sets, and the way we do this is by

changing them to a weaker permission set using ⊑, just like with permissions. With this intuition,

the naming of our top and bottom elements of the lattice become more clear. In our system,

some permission is always held, where π⊤ would be used to represent holding a permission

that represents “nothing”, or the capability to do nothing. The bottom element False is then the

inconsistent or contradictory permission set that is the strongest and implies all others, because it

38

does not represent holding any permission at all, which is not allowed. The top element True is

the vacuously true permission set that is entailed by all others. Since π⊤ ∈ True, the option that

this is the “actual” permission being held must be considered, so the set as a whole is effectively

equivalent to holding π⊤, the weakest permission.

The odd-looking definition of the permission set involving downward-closure is similar to the

Hoare power domain [AJ94] used for the denotational semantics of nondeterministic programs.

The Hoare power domain extends the underlying domain for deterministic programs to subsets of

that domain. The set then contains all the possible nondeterministic computations. The ordering

of these sets is then defined as:

X ⊑ Y def
= ∀x ∈ X, ∃y ∈ Y, x ⊑ y

Crucially, using this definition, a set is equivalent to its downward-closure, and ordering is equiv-

alent to set inclusion, just like our definitions for permission sets.

In contrast to Smyth and Plotkin power domains [AJ94], the Hoare power domain models angelic

nondeterminism. Angelic nondeterminism makes nondeterministic choices in favor of termina-

tion. With the Hoare power domain, this is represented by the fact that elements of the set higher

up in the lattice of programs can be thought of as the representative elements of the set. For

instance, the diverging program ⊥ is part of every nonempty downward-closed set and is es-

sentially ignored, emphasizing the termination properties of the other elements in the set. This

intuition matches our intentions for permission sets. Just as how the Hoare power domain en-

sures that termination dominates, permission sets ensure that weaker permissions dominate, as

weaker permissions are higher in the lattice.

In the first paper on presenting rely-guarantee permissions [He+21], the rely-guarantee permis-

sion and permission set ordering were reversed from what is presented here, and permission

sets were defined as upward-closed. In that setting, this explanation in terms of power domains

would have corresponded to the Smyth power domain, which models demonic nondeterminism

39

rather than the angelic nondeterminism of the Hoare power domain. Ultimately, that explanation

is equivalent to the one above, since the permission lattice is flipped. The Smyth power domain

can be thought of as biasing towards programs lower in the lattice, those closer to the diverging

program, ⊥. In the setting of that paper, a permission set biases towards permissions lower in the

lattice, which are the weaker permissions. This is equivalent to the current setting where we also

bias towards weaker permissions, those higher in the lattice.

Finally, we lift the definition of ∗ to permission sets:

Definition 4.7 (Separating conjunction for permission sets). For permission sets Π1 and Π2, we

define the separating conjunction

Π1 ∗Π2
def
= {π | ∃π1 ∈ Π1, ∃π2 ∈ Π2, π1 ⊥ π2 ∧ π ⊑ π1 ∗ π2 }.

We can then lift the results we had for separating conjunction at the permission level:

Lemma 4.12. Separating conjunction (at the permission set level) is associative and commutative

with respect to ≡, where Π1 ≡ Π2 if Π1 ⊑ Π2 and Π2 ⊑ Π1. The notation is again overloaded

with the equivalence for rely-guarantee permissions.

Lemma 4.13. If Π1 ⊑ Π′1 and Π2 ⊑ Π′2 then Π1 ∗Π2 ⊑ Π′1 ∗Π′2.

Lemma 4.14. Π ∗Π′ ⊑ Π.

Finally, we can link ∗ at the rely-guarantee permission level to ∗ at the permission set level:

Lemma 4.15. If π1 ∈ Π1, π2 ∈ Π2, and π1 ⊥ π2, then π1 ∗ π2 ∈ Π1 ∗Π2.

Unlike the “user-facing” definitions like ∗ and ⊑, which need to be translated to permission sets,

⇝ will not be. As we will see in the next chapter, changing permissions using ⇝ is used only

within the definition of typing, and will need to operate only on individual rely-guarantee per-

missions.

40

CHAPTER 5

A Simple Separation-Logic Type System

Part of this chapter is adapted from work previously published as Paul He, Eddy Westbrook, Brent

Carmer, Chris Phifer, Valentin Robert, Karl Smeltzer, Andrei Ştefănescu, Aaron Tomb, Adam

Wick, Matthew Yacavone, and Steve Zdancewic. “A Type System for Extracting Functional Spec-

ifications from Memory-Safe Imperative Programs.” In: Proc. ACM Program. Lang. 5.OOPSLA

(Oct. 2021) [He+21]. I was the primary author and the primary contributor of the theoretical

component of the paper, the focus of this dissertation.

This chapter will present a separation-logic-based type system to formally connect rely-guarantee

permissions to programs, in order to formalize the intuitions we introduced in Chapter 4. Further-

more, this type system will act as a bridge to the more complex Heapster type system [He+21]—

involving both imperative programs and functional specifications—defined in the next chapter.

There is no technical difference between this type system and a separation logic, but we think of

Heapster as implementing a type system, so we also use this framing here. Heapster types are

typically quite coarse, not specifying values in memory but rather properties typical of most type

systems, like a value being an integer or a pointer.

We will approach the definitions and soundness of the type system semantically [Mil78]. Using

this approach, rather than defining the syntactic typing rules first, we will instead first define the

semantic meaning of the typing judgment and types—using rely-guarantee permissions—then

define and prove typing rules one by one as theorems. If we view the type system as a separation

logic, a semantic approach for soundness is the default one, as in the original heap semantics for

separation logic [Rey02].

Following the examples of the previous chapter, we start with the case where the state is a single

integer. After presenting the intuitions and definitions in this simplified case, we then expand to

a more standard heap and introduce some more familiar rules for pointers from separation logic.

41

5.1. Defining Typing

We will aim to develop a typing relation Π ⊢ t : λr. Π′ which can be thought of as equivalent to a

separation logic specification {Π}t{λr. Π′}, where r, the value of t once it finishes, is free in Π′.

The program t is an ITree, and Π is the permission set held before execution of t, which we will

call the input permission. The specific state type for rely-guarantee permissions and the event

type for ITrees will be defined later on. The output permission, λr. Π′, is a function that produces

the permission set held after t is executed. This permission set depends on a value r of type R, the

return value of the program t. In our definitions, these functions returning permission sets will

be named T, since the output permission can be thought of as the type of the program. To further

motivate the notation we use, the input permission can be thought of as the context—the set of

permissions held before the program runs.

There are two main goals of this definition of typing. First, during the typechecking of t, per-

missions must change to reflect what is currently true about the state and what the program is

currently permitted to do, which can change as the program executes. As stated in Chapter 4,

this will be done using ⇝. Secondly, typing should ensure that everything the program does is

allowed by the guarantee of the held permission. The guarantee is a relation on states, but how

do we relate that to programs, represented as ITrees?

The first step to represent state changes is to use events in the ITree to explicitly signal uses of the

state. Our event type, E, will be inhabited by these two events:

Load : E Z

Store : Z→ E Unit

As discussed in Section 2.3, ITrees can already encode control flow constructs like loops and con-

ditionals, so these events allow us to model a simple imperative language with a single integer

variable. In this section, we will continue with this simple integer state so we can continue with

the previous rely-guarantee permission examples in Chapter 4. In Section 5.3, we will change

42

the state to model a heap, so we can work with a more realistic imperative language and define

permissions for pointers.

Next, to be able to talk about state changes and when states satisfy permissions’ preconditions, we

pair each ITree with a state value and define how they evolve together.

Definition 5.1. We define the steps-to relation (s1, t1) → (s2, t2) on pairs of a state of type Z and

an ITree of type itree E R by the following cases:

(s, τ t)→ (s, t) (s, vis Load k)→ (s, k s) (s, vis (Store s′) k)→ (s′, k unit)

A program that is a ret does not step, since it is finished.

Now that we have a way of determining how states can change in a program, we can define the

typing judgment:

Definition 5.2 (Typing). Let Π be a permission set over Z, t be an itree E R, and T be a function

T : R → PermsZ. Then the semantic typing judgment is defined as the largest relation3 Π ⊢ t : T

that satisfies the following two cases:

1. Π ⊢ ret v : T if Π ⊑ T v.

2. Π ⊢ t : T if:

• t can step, i.e., there exist s, t′, and s′ such that (s, t)→ (s′, t′);

• for any π ∈ Π and s ∈ Pπ, and any new program state we can step to, i.e., for any s′

and t′ such that (s, t)→ (s′, t′),

– the state update is allowed by the permission π’s guarantee: (s, s′) ∈ Gπ.

– the new program is well-typed for a permission that is at least as separate as the

3Defined as a coinductive relation in Coq.

43

previous permission: there exist Π′ and π′ where π′ ∈ Π′ and Π′ ⊢ t′ : T, and

π ⇝ π′ and s′ ∈ Pπ′ .

The first case says that if the program is finished, then the output permission set must be a weak-

ening of the input permission set. As we discussed in Chapter 4, weakening permissions should

always be permitted.

The second case says that if the program is not finished, then it must be able to step. We then

consider all possible permissions π we might be holding, formalizing the intuition from Chapter 4

that any of the rely-guarantee permissions in a permission set might be the one actually held. For

each of these possibilities, for steps whose states start in the precondition of π, any state updates

must be allowed by its guarantee. Additionally, the program we step to must be well-typed as

well, though we can change the input permission set to suit the new state. We are permitted to

select any new permission set, as long as it contains a permission that is at least as separate as π.

This definition also lets us characterize programs that are not well-typed. Programs that are neither

finished (a ret) nor able to step are not well-typed. Of those programs that can step, if they step to

any ill-typed program, then they are also not well-typed.

Let’s walk through this definition on an example of typing a program that performs a store to

update the state:

Example 5.1.

ΠEX↕ ⊢ vis (Store 1) ret : λ_. ΠEX↕(1)

We use _ to represent an ignored argument to the function.

This typing judgment for a store operation lets us refine a ΠEX↕ permission to a stronger one,

ΠEX↕(1), where we know the specific value of the state is 1. The program is not a ret, so we must

use case two of Definition 5.2. The program is vis (Store 1) ret, which can certainly step, for

example by (0, vis (Store 1) ret)→ (1, ret unit), so we can proceed.

44

Next, let π be any permission in ΠEX↕ and s ∈ Pπ. This value s is the specific value of the state

that was existentially quantified over by ΠEX↕. Then the step we take must be (s, vis (Store 1) ret)

→ (1, ret unit).

By the definition of ΠEX↕, it must be that π ⊑ πEX↕(s). (s, 1) ∈ GπEX↕(s) must hold since the

guarantee of πEX↕(s) allows any change, and the guarantee of π must be larger than the guarantee

of πEX↕(s). Thus (s, 1) ∈ Gπ must hold: the state update from s to 1 is permitted by π.

Next, we must make sure the program we step to, ret unit, is well-typed. Since we want to get

to the final output permission of λ_. ΠEX↕(1), this helps us choose the next input permission set

to continue with. We choose the next input permission set to be ΠEX↕(1), and choose πEX↕(1) ∈

ΠEX↕(1). It must be the case that π ⇝ πEX↕(1) since π ⇝ πEX↕(s) (because the inequality result

π ⊑ πEX↕(s) holds) and then πEX↕(s) ⇝ πEX↕(1) by Theorem 4.10 (because they only differ in

their preconditions). The final condition to check is that the precondition of πEX↕(1) holds on the

new state, 1, which it does.

Finally, we need to show ΠEX↕(1) ⊢ ret unit : λ_. ΠEX↕(1). We use case one of Definition 5.2, and

we are done.

5.2. General Typing Rules

Since our programs are represented as ITrees, which are defined coinductively, the typing relation

is coinductive as well to handle diverging programs properly. For example, the diverging program

that does nothing is well typed with any input and output permissions:

Lemma 5.2. For any Π and T,

Π ⊢ spin : T

The rule of consequence is a crucial rule in Hoare logic and its descendants. The following rule

allows us to strengthen the input permission and weaken the output permission of an existing

typing judgment:

45

Theorem 5.3 (CNSQ).

Π ⊑ Π′ T′ r ⊑ T r for any r Π′ ⊢ t : T′

Π ⊢ t : T

This rule implies that we can weaken any typing judgment to have the input permission False.

In fact, False can type any program as long as that program is a ret or can step. Since there is no

π ∈ False, the second subcase of case two holds vacuously.

While we use⇝ to change permissions between steps of execution, we want to use ⊑ for when

the program remains unchanged. This is because we do not want the precondition to change

arbitrarily without a step of execution occurring. If we did attempt to prove a similar result with

⇝ (assuming we had a version for permission sets), it would not hold, as typing requires the

precondition to hold on the current state, which may be changed by a new permission that is at

least as separate as the previous one.

The CNSQ rule formalizes the intuition that we can always weaken currently-held permissions

during typechecking. For example, we can make use of the ordering result between ΠEX↕ and

ΠEX↕(1), which holds because ΠEX↕ is defined as a join of ΠEX↕(b) for all b:

ΠEX↕(1) ⊑ ΠEX↕

We can then use this result to weaken the output permission of our previous example, without

having to redo the typechecking proof:

Example 5.4.

ΠEX↕ ⊑ ΠEX↕ ΠEX↕(1) ⊑ ΠEX↕ ΠEX↕ ⊢ vis (Store 1) ret : λ_. ΠEX↕(1)
Ex. 5.1

ΠEX↕ ⊢ vis (Store 1) ret : λ_. ΠEX↕
CNSQ

This can be useful if we do not need the specific value of the state, or if we want to compose this

46

with another typing judgment which expects the weaker, more general permission ΠEX↕.

The following rule allows us to perform such a sequential composition, combining two well-typed

programs using the monadic bind:

Theorem 5.5 (BIND).
Π ⊢ t : T′ T′ r ⊢ k r : T for any r

Π ⊢ x ← t; k x : T

Using this rule, we can now compositionally typecheck the program that just repeats the earlier

program of storing 1 twice. Example 5.4, where we use CNSQ, is essential to ensure that the

intermediate permission set matches up between the two parts of the program in order to use

BIND.

Example 5.6.

ΠEX↕ ⊢ vis (Store 1) ret : λ_. ΠEX↕
Ex. 5.4

ΠEX↕ ⊢ vis (Store 1) ret : λ_. ΠEX↕(1)
Ex. 5.1

ΠEX↕ ⊢ vis (Store 1) ret; vis (Store 1) ret : λ_. ΠEX↕(1)
BIND

Finally, we can prove the frame rule of separation logic:

Theorem 5.7 (FRAME).
Π ⊢ t : T

Π ∗Π′ ⊢ t : λv. T v ∗Π′

This rule allows typing rules to be minimal, only including the permissions they need to function.

In the present setting with integer state, this rule is not very useful, but with a more interesting

state that allows for different permissions on disjoint pieces, like in Section 5.3, this rule is crucial.

One thing to note is that we are permitted to combine permissions that are not separate using ∗.

For example, we could use FRAME to add any permission set to our earlier example.

ΠEX↕ ∗Π↑ ⊢ vis (Store 1) ret : λ_. ΠEX↕(1) ∗Π↑

47

This permission set ΠEX↕ ∗ Π↑ ends up being equivalent to False, since its weakest elements,

πEX↕(b) and π↑(b′), are not separate. As mentioned earlier, False types any program that can

step, so this program is well-typed. When we present the type safety result for this system in the

next section, we will only consider programs that are well-typed with “reasonable” input permis-

sions. Permission sets like False, or sets containing permissions with false preconditions will not

be considered reasonable.

5.3. Defining Memory Operations

Now that we understand the basic definitions and intuitions of typing, we can move to a more

realistic state type and introduce more interesting permissions. We will define a heap for use

in the state, and define pointer permissions, similar to points-to assertions in separation logic.

The intuitions and the results from the previous section continue to hold, but some definitions

will have to change and become more complex. With a definition of the heap, we also get the

possibility of memory errors and the notion of soundness for the type system—memory safety.

First, to define the heap, we will use a simplified version of the CompCert memory model [Ler09].

In this memory model, a memory is a number of blocks, each of which can be allocated or unallo-

cated. Each allocated block stores the size of the block and consists of a sequence of values in the

block.

Concretely, a memory of type Mem is implemented as a list of blocks of memory, where a block

represents a sequence of allocated memory cells. The choice of using a list is for convenience—it

allows new blocks to be easily allocated by appending to the end of the list. A block consists of

the size of the block and a partial function from natural number indices to imperative values. We

can have addresses (b, o) representing a pointer to the value in the b-th block at an offset of o from

the beginning of the block. We will write the type of these addresses as addr def
= N×N. Values in

the memory will have type Val, and can be either a VNum n, representing the natural number n,

48

Block # Block

0

size = 10
0 7→ VPtr (0, 1)
1 7→ VNum 2
. . .

1
size = 1
0 7→ VNum 2

2 size = 0
.

Figure 5.1: An example of a heap.

or a VPtr a, representing a pointer with address a.

VNum : N→ Val

VPtr : addr→ Val

Figure 5.1 shows a graphical example of a Mem. The pointer VPtr (0, 0) would point to the value

in block 0 at offset 0, which is itself a pointer. The pointer value stored there would in turn refer

to the VNum 2 value in the same block, at offset 1. For generality, we permit blocks to have size 0,

like the one at block 2.

With this memory model in hand, we can then define functions read : Mem → addr → Option Val

and write : Mem→ addr→ Val→ Option Mem, which read and write to a memory using a pointer

value. These functions can fail and return None if the pointer we try to use does not point to valid

memory. The definitions are straightforward and are omitted here.

Now that we have memory operations that can fail, we would also like to represent these failing

computations formally. We define the state as a pair of a Mem and a boolean that represents

whether a memory error has occurred. With this new error flag, we also overload the read and

write functions to be able to operate on this state, leaving the error bit unchanged. We define error

as the function that sets the error bit to true while leaving the Mem portion of the state unchanged.

By adding the error status to the state, we can control whether memory-unsafe operations are

49

allowed using permissions.

Next, we must also modify the Load and Store ITree events, which previously just read or over-

wrote the single integer in the state.

Load : Val→ E Val

Store : Val→ Val→ E Unit

Now, these events specify the memory location they access using a Val. This introduces another

way our programs can step to error—by trying to access a memory address using a VNum rather

than a VPtr. As a convenience, we name the following ITrees for the programs that just perform a

load and store, respectively.

load p = vis (Load p) ret

store p v = vis (Store p v) ret

We also introduce the Read and Write functions as a convenient variant of the read and write func-

tions defined earlier that operate on Mems. These functions take a Val argument instead of an addr

for the address to access, and return None if the Val is not a VPtr.

Now with these operations, we can define a more complex steps-to relation:

(s, τ t)→ (s, t)

Read s p = Some v
(s, v← (load p); k v)→ (s, k v)

Write s p v = Some s′

(s, (store p v); k)→ (s′, k unit)

Read s p = None

(s, v← (load p); k v)→ (error(s), k (VNum 0))
Write s p v = None

(s, (store p v; k)→ (error(s), k unit)

This relation sets the error bit to true if a memory error occurs, and never sets it back to false,

which lets us determine if any memory errors happened during execution.

50

Using this new steps-to function and the updated Load and Store events, we can then define typing

in the same way as in the previous section. All the results in Section 5.2 continue to hold.

5.4. Type Soundness

We will use rely-guarantee permissions to prove that the type system is sound—here, meaning

that it ensures memory safety—using semantic type soundness. We have already defined the

semantics of types and of typing using rely-guarantee permissions and proved some of our typing

rules as theorems. In this section we will prove adequacy: that semantic typing implies soundness.

The adequacy theorem for the type system states that well-typed programs are indeed safe, mean-

ing that they never step to a state where the error bit is true. However, the permissions that we

type the program with are crucial. Recall that the input permission set False can type any step-

ping program or a ret. Further, if we had a permission whose guarantee permitted changes from

non-error to error, an unsafe program would be well-typed with that input permission as well. To

restrict our programs to those typed using safe permissions, we first define a non-error permission:

πne
def
= ({ (s1, s2) | if the error bit of s1 is false, then the error bit of s2 is false too },

=,

{ s | the error bit of c is false })

Due to its rely, this permission is not separate with any permission that allows errors to occur in

its guarantee. Then if we add this permission using ∗, we only deal with “safe” permissions that

do not permit stepping to an error.

With this non-error permission, we are ready to prove the adequacy theorem:

Theorem 5.8. If Π ⊢ t : T, then for any π ∈ Π ∗ [πne], and any s ∈ Pπ, for any s′ and t′ where (s, t)

→∗ (s′, t′), the state s′ has a false error bit.

As is typical with semantic type soundness, the adequacy theorem follows easily from the defi-

nition of typing. The theorem states that well-typed programs obey their permissions. Picking a

51

rely-guarantee permission π ∈ Π ∗ [πne] effectively selects a permission from Π that has a guar-

antee that does not permit going from non-error to error. This theorem then says that well-typed

programs behave safely, as required by the permission π.

While there is little difference in functionality between our type system and a separation logic, our

presentation of soundness is influenced by our perspective of it as a type system. A soundness re-

sult for a separation logic would typically look like “if the state satisfies the precondition, then the

state after execution will satisfy the postcondition”. Our soundness result does not mention the

output permission, since we do not place much emphasis on output permissions aside from using

them for composing programs using BIND. In Heapster, the main emphasis is on providing input

permissions that are precise enough to typecheck the entire program, so that a functional specifi-

cation can be extracted from the imperative program, and the definition of soundness reflects that

emphasis.

5.5. Memory Typing Rules

In this section, we introduce some more interesting types and their typing rules. The main nov-

elty of the type system is that it will include types for reading and writing to specific addresses.

Multiple aliasing pointers where one of them is allowed to write to memory can lead to memory

safety bugs and are disallowed by the type system. However, aliasing is allowed if all the pointers

only read from memory.

This type system will be somewhat limited, as this section is meant to be an introduction to the

full type system in Chapter 6. More realistic rules for crucial features like malloc and free, as well

as more comprehensive coverage of typing rules will be presented in the next chapter.

Now that we have pointers in the language, it is also useful to introduce the notation x : T as the

function application T x, where T is a function from Val to PermsMem. Many of our types can be

represented as functions from Val to PermsMem, so x : T represents a value x having such a type

T. For example, if we know that p points to another pointer, we could have a typing judgment

Π ⊢ load p : Tptr, where Tptr is a type that describes what it points to and its capabilities. Then,

52

after this load program returns another pointer p′, we can use the new notation to write p′ : Tptr,

to signify that p′ has the pointer type Tptr. Concretely, this notation means that the program now

holds the PermsMem obtained after applying the function Tptr to the value p′ of type Val.

We start with pointer permissions, which will be used for typing Load and Store events. We define

the pointer read and pointer write permissions on values a ∈ addr and v ∈ Val to represent the ability

to read and write, respectively, to the address a which currently points to a value v.

πread(a, v) def
= ({ (s1, s2) | read s1 a = read s2 a },

=,

{ s | read s a = Some v })

πwrite(a, v) def
= ({ (s1, s2) | read s1 a = read s2 a },

{ (s1, s2) | the error bits of s1 and s2 are the same,

the number of blocks in s1 and s2 are the same,

the size of all blocks in s1 and s2 are the same, and

∀a′ ̸= a, read s1 a′ = read s2 a′ },

{ s | read s a = Some v })

The rely of each permission allows anything in the state to be modified other than the value

pointed to by a, while the precondition requires the value pointed to by a to be v. The guar-

antee for πread does not allow any update to be performed by the holder of the permission, while

the guarantee for πwrite allows the value pointed to by a to change, but everything else about the

state must stay unchanged.

As the two permissions only differ in their guarantees, we can prove that we can always weaken

a write permission into a read permission:

53

Lemma 5.9. πwrite(a, v) ⊑ πread(a, v)

Another useful result is that we can duplicate the read permission:

Lemma 5.10. πread(a, v) ⊑ πread(a, v) ∗ πread(a, v).

In fact, we can duplicate any permission π where Gπ ⊆ Rπ, which implies it is separate from

itself.

With these definitions, we can model the points-to assertion a 7→ v of separation logic, repre-

senting ownership of the address, using πwrite(a, v). The pointer-read permission, on the other

hand, permits reading the address a using multiple read permissions via duplication, and resem-

bles a fractional permission a
f7→ v [Boy03]. The fraction f in a fractional permission can take

rational values in (0, 1], representing full ownership—write access—when f = 1, and fractional

ownership—read-only access—when f < 1. Fractional permissions can be split by splitting the

fraction, and merged by recombining the fraction back together, solving the issue with pointer

aliasing and write access mentioned previously. The πread(a, v) permission can also be split by du-

plicating, but unlike fractional permissions, can not be recombined to reobtain a πwrite(a, v). This

major shortcoming is addressed by lifetimes in Chapter 7.

As discussed in Chapter 1, Heapster has the flavor of a type system rather than a separation

logic. Heapster types typically do not describe the exact values that each pointer points to as in

a separation logic, but are coarser descriptions. As such, it is more useful for a pointer type to

contain the type of the value pointed to by the pointer, rather than the value itself. To represent

this, we define a permission set that includes the content permission, the type of the value that the

pointer points to:

x : ptr(rw 7→ T) def
=

⊔

v∈Val[πrw(a, v)] ∗ v : T if x = VPtr a

False if x = VNum _

where rw is either read or write.

54

The use of the permission set in this definition is crucial. It allows us to existentially quantify over

the value v using the join and combine the pointer permission with the content permission, which

relies on the value v.

The content permission of a pointer permission could be another pointer permission. For example,

p : ptr(write 7→ ptr(read 7→ True)) would represent the knowledge that p is a pointer we have write

access to, and the value it points to is another pointer, but one that we cannot update. That second

pointer has a True content permission, meaning that we do not know anything about the value it

points to.

If needed, we can still represent the exact value at an address in memory using an equality per-

mission, defined as the following:

x : eq(y) =

True if x = y

False otherwise

With this definition, we are only able to create equality permissions that relate equal values, since

unequal values would result in the False permission set:

Theorem 5.11 (EQREFL).

Π ⊑ Π ∗ x : eq(x)

The properties of equality also give us the following rules to further manipulate equality permis-

sions:

Theorem 5.12 (EQSYM).

x : eq(y) ⊑ y : eq(x)

Theorem 5.13 (EQTRANS).

x : eq(y) ∗ y : eq(z) ⊑ x : eq(z)

55

Theorem 5.14 (EQCTX).

x : eq(y) ⊑ f x : eq(f y)

Like pointer-read permissions, equality permissions are duplicable, since they are just the vacuous

True permission set:

Theorem 5.15 (EQDUP).

x : eq(y) ⊑ x : eq(y) ∗ x : eq(y)

Once an equality permission is obtained, it can be discharged with the following rule:

Theorem 5.16 (CAST).

x : eq(y) ∗ y : T ⊑ x : T

With the equality permission as the content permission of a pointer-write permission, we can

again model the separation logic p 7→ v, this time at the permission set level:

p : ptr(write 7→ eq(v))

Now that we have these types available to us, we can prove the typing rules for loads and stores.

First, the rule for a load event:

Theorem 5.17 (LOAD).

p : ptr(rw 7→ T) ⊢ load p : λv. (p : ptr(read 7→ eq(v)) ∗ v : T)

where rw is read or write.

The equality permission is necessary here so that the type T is moved out of the pointer permission,

not copied. By replacing the content permission with an equality permission, a connection to

the original type T is retained, but without duplicating the permission set v : T. While some

56

permissions are safe to copy, it is not generally safe to duplicate permissions. For example, copying

a pointer-write permission is not sound, since they represent exclusive ownership. That is, it is

not true that πwrite(p, v) ⊑ πwrite(p, v) ∗ πwrite(p, v).

Similarly, the typing rule for a store also uses an equality permission:

Theorem 5.18 (STORE).

p : ptr(write 7→ T) ⊢ store p v : λ_. p : ptr(write 7→ eq(v))

If we knew that v : T′ for some type T′, it would not be sound to have this typing rule with the

output permission λ_. p : ptr(write 7→ T′). This is because it would be duplicating the permission

set v : T′, which again, may not be safe. However, if we removed the original instance of the

permission set v : T′ then the resulting rule would be sound:

Lemma 5.19 (STORE-ALT).

p : ptr(write 7→ T) ∗ v : T′ ⊢ store p v : λ_. p : ptr(write 7→ T′)

These rules are equivalent, since STORE can be thought of as STORE-ALT where T′ is the equality

permission eq(v). We prefer to use STORE since it matches the corresponding rule in Heapster.

Now that we have rules for typing load and store instructions, let’s use them in an example.

Consider the following program, where we already have a value p:

p′ ← load p;

store p′ (VNum 1)

In order for this to be memory safe, we need to know that p is a pointer to a value p′, that p′

is also a pointer, and that we can write to it. We can express this with the input permission set

57

p : ptr(read 7→ ptr(write 7→ True)). Since we only do a store with the second pointer, the first

pointer permission can be a read permission. For simplicity, we set the output permission to True,

which can be acceptable if we do not intend to ever compose this computation with another, for

example. Now that we have chosen the input and output permissions, we can typecheck the

program:

Example 5.20.

p : ptr(read 7→ ptr(write 7→ True)) ⊢ load p :

λp′. p : ptr(read 7→ eq(p′)) ∗ p′ : ptr(write 7→ True)

LOAD

p′ : ptr(write 7→ True) ⊢ store p′ (VNum 1) :

λ_. p′ : ptr(write 7→ eq(VNum 1))

STORE

p : ptr(read 7→ eq(p′)) ∗ p′ : ptr(write 7→ True) ⊢

store p′ (VNum 1) : λ_.True

CNSQ

p : ptr(read 7→ ptr(write 7→ True)) ⊢
p′ ← load p;

store p′ (VNum 1)
: λ_.True

BIND

The example is fairly short, using BIND to type each instruction separately using LOAD and STORE.

Reading from the bottom up, we use CNSQ to weaken the input permission and strengthen the

output permission. For the input permission, we use Lemma 4.14 to drop the unneeded per-

mission about p. For the output permission, we strengthen it from True to the exact permission

obtained from STORE.

If we want to strengthen the output permission to give more precise information about the point-

ers in the program, we have two options. One is to use a permission about p, for example

λ_. p : ptr(read 7→ ptr(write 7→ eq(VNum 1))). This, however, requires us to recombine the pointer

permissions about p and p′. To do this we need a typing rule similar to CAST for pointer per-

missions with equality permissions as their content permissions, which we have not proved yet.

Such a rule will be presented when we go through memory operations more comprehensively in

Chapter 6. A second option is to slightly change the program by adding ret p′ to the end, so we

can refer to that pointer value in the output permission. Without this ret, we would not be able to

use p′ in the output permission, since it is not in scope until after the load instruction. Then, the

output permission can be λp′. p : ptr(read 7→ eq(p′)) ∗ p′ : ptr(write 7→ eq(VNum 1)).

58

_p 1p

p 1p

Figure 5.2: Two possible valid starting and final memory layouts.

One common source of bugs in pointer-manipulating programs is aliasing. What if p and p′ are

actually the same pointer? Edge cases like this commonly result in bugs, but luckily this program

runs without error in this case. The memory layout for both cases is shown in Figure 5.2, along

with the result of executing the program.

The input permission we used earlier, however, does not allow for this circularity. The content

permission of a pointer permission must be separate from the pointer permission itself, due to its

definition. Since one pointer permission is a read and one is a write, they are not separate and

cannot coexist. The fact that the program typechecks in Example 5.20 does not mean that it is safe

in all cases, but only that it is safe in the case without aliasing.

However, we can still express this possibility of circularity using an equality permission, proving

that this program is also safe in the aliasing case. The input permission p : ptr(write 7→ eq(p)) rep-

resents the case when the pointer p points to a value which is a pointer to itself. In this example we

use a more informative output permission of λ_. p : ptr(write 7→ eq(VNum 1)), since the process

of establishing this output permission illustrates some of the other typing rules we introduced.

59

Example 5.21.

p : ptr(write 7→ eq(p)) ⊢ load p :

λp′. p : ptr(write 7→ eq(p′)) ∗ p′ : eq(p)

LOAD

p′ : ptr(write 7→ eq(p′)) ⊢ store p′ (VNum 1) :

λ_. p′ : ptr(write 7→ eq(VNum 1))

STORE

p′ : ptr(write 7→ eq(p′)) ∗ p′ : eq(p) ⊢ store p′ (VNum 1) :

λ_. p′ : ptr(write 7→ eq(VNum 1)) ∗ p′ : eq(p)

FRAME

p : ptr(write 7→ eq(p′)) ∗ p′ : eq(p) ⊢ store p′ (VNum 1) :

λ_. p : ptr(write 7→ eq(VNum 1))

CNSQ

p : ptr(write 7→ eq(p)) ⊢
p′ ← load p;

store p′ (VNum 1)
: λ_. p : ptr(write 7→ eq(VNum 1))

BIND

We again use BIND to type each instruction separately using LOAD and STORE. This time, the

use of CNSQ is more complex. The goal is to change both input and output permissions into the

form needed to use STORE. In the input permission, we apply EQDUP to duplicate the equal-

ity permission, then consume one of them using CAST to obtain a pointer permission for p′. In

the output permission, since we are strengthening the permission, we change the permission to

λ_. p′ : ptr(write 7→ eq(VNum 1)) ∗ p′ : eq(p). This is valid because we can weaken this to the

previous output permission using EQSYM and CAST. We chose these specific permissions be-

cause we then apply FRAME to remove the now-unneeded equality permission in both input and

output permissions. Finally, the resulting permissions are exactly those needed for STORE.

60

CHAPTER 6

Specification Extraction

Part of this chapter is adapted from work previously published as Paul He, Eddy Westbrook, Brent

Carmer, Chris Phifer, Valentin Robert, Karl Smeltzer, Andrei Ştefănescu, Aaron Tomb, Adam

Wick, Matthew Yacavone, and Steve Zdancewic. “A Type System for Extracting Functional Spec-

ifications from Memory-Safe Imperative Programs.” In: Proc. ACM Program. Lang. 5.OOPSLA

(Oct. 2021) [He+21]. I was the primary author and the primary contributor of the theoretical

component of the paper, the focus of this dissertation.

In this chapter, we use rely-guarantee permissions to verify the core of the type system used in

Heapster, which extracts specifications from imperative programs. The approach in this chapter

extends the ideas presented in Chapter 5, primarily with the addition of a second program—the

functional specification—to the typing judgment. The typing judgment in this chapter will relate

two programs and the permissions held before and after the execution of these programs. The first

program, which we will call the implementation or imperative program, is like the program in the

typing judgment for Chapter 5. Implementation programs represent the user’s input code in an

imperative language like C. The second program is what we will call the functional or specification

program, which represents the pure functional program that is extracted by Heapster. Specifica-

tion programs should be simpler versions of the implementation ones, with imperative features

like memory accesses removed.

A key detail is that the memory safety of the implementation program is not always easy to de-

termine. For example, whether an array access is safe depends on whether the index is within the

bounds of the array, so we cannot easily extract a safe functional specification program. To han-

dle this case, we permit specifications to contain errors, so they can represent the case when the

implementation program is not safe. For the example of array accesses, the check that the index is

within bounds is translated to a dynamic check in the specification program, which can fail.

61

We first update the definitions of our language and our typing judgment, as well as the soundness

result for this type system. With this new definition, we can then introduce the new types of the

type system, their typing rules, and some small examples of using these typing rules. Section 6.6

will present a larger example that shows more involved usage of these types and typing rules.

Finally, we will discuss the relationship between the type system presented in this chapter and the

Heapster tool, and how the tool is typically used.

6.1. Definitions and Semantic Typing

The language considered in this section differs from that of Chapter 5. We wish to support more

memory operations, not just loading and storing single values. For example, allocation and deal-

location are crucial operations that change entire blocks of memory, not just a single value in a

block. Rather than modifying the event type and adding new cases alongside the existing Load

and Store events from the previous chapter, we will instead change the event type to be able to

handle any state access. We will call the event type ES, for a state type S. To represent any read or

write of the state, we define the event

Modify : (S→ S)→ ES S.

The event Modify f carries a function f that can represent arbitrary changes to the entire state.

It also allows us to read and write simultaneously in one event. Whereas the previous model

was specific to the concrete Mem memory model and only allowed reading and writing using

individual pointers, this one is expressive enough to represent any state update to the state type,

which could be specialized to Mem. Now changes to the language will only require updating the

state type, and not the event type for our ITrees, allowing us to define the typing judgment for any

state and language, rather than a different one for each language.

62

The steps-to relation then only needs to handle the τ case and the case for this Modify event:4

(s, τ t)→ (s, t) (s, vis (Modify f) k)→ (f s, k s)

For the Modify event, the continuation gets the value of the previous state, before the state is modi-

fied using f . This is meant to be a convenient way of both getting the previous value and updating

the state, rather than having to use two Modify events in a row.

In addition to the Modify event, we also have exception events, which we will use to represent

errors as programs, rather than as error states as in Chapter 5.

Throw : ES ∅

This exception event expects a value of the void type, ∅, from the environment as a response. Of

course, no such value exists, so this type effectively makes Throw a special leaf node in ITrees that

use it, which can give the resulting ITree any return type. We call the ITree that consists of just this

event error:

error : itree EMem R

error
def
= vis Throw (λx : ∅.⊥)

We use an error program rather than an error state because we are less interested in completely

preventing error from occurring, as in Chapter 5, but rather want to ensure that the implemen-

tation and specification programs we are typechecking behave similarly. We no longer need to

prevent errors using a permission’s guarantee, but will instead require that errors in each pro-

gram are related using the definition of typing itself. As we will see in more detail later, in some

cases, the correctness of the imperative program may depend on memory in some way that cannot

be directly translated to a functional specification. In these cases, we can use error to represent the

4The Coq formalization also includes nondeterminism events, which we do not use in this dissertation. These events
were used to represent concurrent programs, and the approach is described in Section 8.1.

63

possibility of a memory error in the functional specification.

Generalizing the state type is also necessary since we want the imperative implementation pro-

grams and functional specifications to have the same event signature, for ease of defining the

typing judgment. To reflect the differences between the two languages, such as the absence of a

heap in the functional language, the two will use different state types. In this chapter, imperative

implementation programs will have state type Mem, and functional specification programs will

have state type Unit, and not use any state at all.

Rather than defining typing all at once as we did in Chapter 5, we define it here in two steps. We

first define a notion of bisimulation to relate the implementation and specification programs with

respect to a specific input rely-guarantee permission and an output permission set. We then use

this bisimulation to generalize to a typing judgment with an input permission set. By making the

currently-held permission explicit rather than having to choose an arbitrary permission from a

permission set, this simplifies many typing proofs.

For the bisimulation, we keep the state types for the implementation and specification programs

abstract, naming them Si and Ss respectively. While the programs only deal with their own state

types, we use rely-guarantee permissions to relate the two programs, and so they must deal with

both state types. The rely-guarantee permissions we use are therefore permissions over (Si × Ss).

More specifically, the bisimulation will be a stuttering bisimulation [BCG88], which allows either

program to step finitely without the other taking any steps. We use this instead of a standard

bisimulation, which requires the two programs to run in lock step, because such synchronization is

not always possible. For example, the imperative program may involve some memory operations,

but the specification is meant to remove such operations, and will not perform those steps.

In addition to stuttering, the bisimulation will also be asymmetric, allowing errors to occur on

the right, in the specification program. This is due to the asymmetry of how we will use this

definition in typing—since the programs are supposed to be implementations and specifications,

there should be some notion of refinement in this definition. The implementation program should

64

refine the specification, so it is always acceptable to add an extra error behavior to the specification

program. As we will see in the adequacy theorem for this type system, this asymmetry tells us

that if the specification is safe—that it cannot step to an error—then the implementation program

must be safe too.

Definition 6.1 (Stuttering bisimulation up to errors on the right). Let si ∈ Si, ss ∈ Ss, ti ∈

itree ESi Ri, and ts ∈ itree ESs Rs. Given a permission π over Si × Ss (the “input permission”)

and a function T : Ri → Rs → PermsSi×Ss (the “output permission type”), we define stuttering

bisimulation up to errors on the right as the biggest relation (ti, si) ⪅π,T (ts, ss) such that one of the

following cases hold:

1. ti = ret ri and ts = ret rs for some ri ∈ Ri and rs ∈ Rs where π ∈ T r1 r2 and (si, ss) ∈ Pπ.

2. ts = error.

3. (si, ss) ∈ Pπ and for any t′i and s′i such that (si, ti) → (s′i, t′i), we have ((si, ss), (s′i, ss)) ∈ Gπ,

and there is some permission π′ where π ⇝ π′ and (t′i, s′i) ⪅π′,T (ts, ss).

4. (si, ss) ∈ Pπ and for any t′s and s′s such that (ss, ts) → (s′s, t′s), we have ((si, ss), (si, s′s)) ∈ Gπ,

and there is some permission π′ where π ⇝ π′ and (ti, si) ⪅π′,T (t′s, s′s).

5. ti and ts start with the same type of event, (si, ss) ∈ Pπ, and both of the following are true:

• for any t′i and s′i such that (si, ti) → (s′i, t′i), there exists t′s and s′s such that (ss, ts) →

(s′s, t′s), where ((si, ss), (s′i, s′s)) ∈ Gπ, and there is some permission π′ where π ⇝ π′

and (t′i, s′i) ⪅π′,T (t′s, s′s).

• for any t′s and s′s such that (ss, ts) → (s′s, t′s), there exists t′i and s′i such that (si, ti) →

(s′i, t′i), where ((si, ss), (s′i, s′s)) ∈ Gπ, and there is some permission π′ where π ⇝ π′

and (t′i, s′i) ⪅π′,T (t′s, s′s).

Furthermore, cases 3 and 4 cannot be applied in an infinite chain, whereas case 5 can,5 to ensure

5In the Coq development, this is implemented using a mixed inductive-coinductive definition, where cases 3 and 4

65

diverging computations are not related to every program, and two diverging computations can

be related to each other.

There are strong similarities to Definition 5.2, the definition of typing in Chapter 5. Case 1 is

similar to the case in the previous definition that relates two ret programs. This case is the only one

that uses the output permission type, and ensures that the input permission is in the permission

set obtained from the output type. Cases 3, 4, and 5 involve stepping. The process of stepping

is also very similar to the previous definition, requiring that the step is allowed by the current

permission’s guarantee, and that the new program continues to be bisimilar using a permission

that is at least as separate as the previous one. For all four of these cases, the starting states must

be in the precondition of π, ensuring that they satisfy the assumptions that the permission makes

about the state.

Other parts of the definition are not as similar as the previous definition of typing. Case 2 allows

any program to be related to the error specification. As discussed earlier, this adds a notion of

the implementation refining the specification to this bisimulation. Stuttering steps are included

using cases 3 and 4, which allow one program to step while the other program does not. Case 5,

on the other hand, captures the “standard” bisimulation definition, requiring that any step either

program makes is matched by the other.

Using this definition, if the specification has no errors, then neither does the implementation:

Theorem 6.1 (Error-Freedom). If (ti, si) ⪅π,T (ts, ss) and (ss, ts) ̸→∗ error then (si, ti) ̸→∗ error.

We define typing on top of this bisimulation:

Definition 6.2 (Typing). Let Π ∈ PermsSi×Ss (the “input permission set”), T : Ri → Rs →

PermsSi×Ss (the “output permission type”), ti ∈ itree ESi Ri (the implementation program), and

ts ∈ itree ESs Rs (the specification program). We define the typing judgment Π ⊢ ti ⪅ ts : T to hold

if for any π ∈ Π and any si and ss such that (si, ss) ∈ Pπ, we have (ti, si) ⪅π,T (ts, ss).

are inductive and case 5 is coinductive. The Coq formalization is also slightly different than presented here in that it
inlines the use of→, resulting in 6 stepping cases rather than the 3 shown here.

66

This definition hides some of the details of bisimulation, like the starting states, and changes the

input permission to a permission set, more closely resembling Definition 5.2 for typing in the

simplified setting.

The adequacy theorem for this type system follows easily from Theorem 6.1. As in Chapter 5,

adequacy is easy to prove from the definition of semantic typing. Since we now represent error as

a program rather than a state, we do not need the no-error permission found in Theorem 5.8.

Theorem 6.2 (Adequacy). If Π ⊢ ti ⪅ ts : T, then for any π ∈ Π and (si, ss) ∈ Pπ, (ss, ts) ̸→∗ error

implies that (si, ti) ̸→∗ error.

6.2. Permission Types

In this section we present the semantic interpretation of a type in our type system and introduce

some basic types and typing rules. More involved types, like those dealing with memory or arrays,

will be covered in other sections. For this section, we will continue to hold the state types for

implementation and specification programs abstract, calling them Si and Ss.

While we used the term “type” loosely in the context of the previous chapter’s type system, we

define them more formally here:

Definition 6.3 (Permission types). An (Ai, As)-permission type is a function from an implementa-

tion value of type Ai and a specification value of type As to a permission set in PermsSi×Ss . We

write PType(Ai, As) for the set of (Ai, As)-permission types.

A permission type should be thought of as relating an implementation value and a specification

value. When these values are available, we write xi : T ▷ xs for the application T xi xs of T to

xi ∈ Ai and xs ∈ As. For example, later in this section we will define a permission type Nat

that relates an implementation Val with a specification natural number value. Then xi : Nat ▷

xs is a permission set which tells us that xi is a Val that represents a natural number and xs is

a specification value that represents the same natural number. The representation of a natural

number in specification programs will be described later in this section, when we define Nat.

67

xi : T ▷ xs ⊢ ret xi ⪅ ret xs : T RET
Π ⊢ ti ⪅ error : T ERR

Π1 ⊑ Π2 ∀xi, xs, xi : T2 ▷ xs ⊑ xi : T1 ▷ xs Π2 ⊢ ti ⪅ ts : T2

Π1 ⊢ ti ⪅ ts : T1
CNSQ

Π ⊢ ti ⪅ ts : T1 ∀xi, xs, xi : T1 ▷ xs ⊢ ki xi ⪅ ks xs : T2

Π ⊢ (x ← ti; ki x) ⪅ (x ← ts; ks x) : T2
BIND

Figure 6.1: Basic structural typing rules.

The output permission type argument of the typing judgment is an (Ri, Rs)-permission type,

where Ri and Rs are the return types of the implementation and specification programs, respec-

tively. Consequently, the output type should be thought of as relating the final value of the imple-

mentation program with the final value of the specification program.

As a first example of rules that use these permission types, we present some typing rules that deal

with the basic structure of programs in Figure 6.1. The RET and ERR rules follow from their re-

spective base cases in the definition of bisimulation. RET will typecheck two ret programs if they

return values that are already known to be related by type T in the input permission set, and main-

tains this knowledge by using T as the output type. ERR can extract an error specification from

any implementation program and any input and output permissions, acting as an escape hatch

for when the implementation program cannot be typechecked in another way. CNSQ and BIND

are the same as the corresponding rules presented in Chapter 5, but with specification programs

added.

BIND splits both implementation and specification programs. This may seem like a limitation due

to requiring that both programs be split even when they are not one-to-one translations, but the

fact that ITree is a monad provides flexibility here. The associativity monad law allows the two

programs to be split differently, and the identity monad laws allow us to add extraneous no-op

programs like ret unit. These no-op programs are especially useful for when a portion of the

implementation program corresponds to no computation in the specification program, a pattern

we will see often in upcoming rules and examples.

68

Π ⊑ Π ∗ xi : eq(xi) ▷ unit
EQREFL

xi : eq(yi) ▷ unit ⊑ yi : eq(xi) ▷ unit
EQSYM

xi : eq(yi) ▷ unit ∗ yi : eq(zi) ▷ unit ⊑ xi : eq(zi) ▷ unit
EQTRANS

xi : eq(y) ▷ unit ⊑ f xi : eq(f y) ▷ unit
EQCTX

xi : eq(y) ▷ unit ⊑ xi : eq(y) ▷ unit ∗ xi : eq(y) ▷ unit
EQDUP

xi : eq(yi) ▷ unit ∗ yi : T ▷ ys ⊑ xi : T ▷ ys
CAST

Figure 6.2: Typing rules for equality permission types.

6.2.1. Equality Types

We can redefine the equality permissions from chapter 5 to include specification values:

eq : A→ PType(A,Unit)

x : eq(y) ▷ unit
def
=

True if x = y

False otherwise

In Heapster, equality types are only relevant in the typechecking process and are not transferred

over to specification programs, so they are related to Unit values on the specification side. Fig-

ure 6.2 contains all the typing rules for equality types. These are the same as the rules presented

in Chapter 5, but with an added unit on the specification side.

As an example of using equality types, we consider a simple program that we will use as a single

instruction in imperative programs. This instruction getNum v attempts to return the numerical

value from a Val v, and fails if the Val is not a number:

getNum : Val→ itree ESi N

getNum (VNum n) def
= ret n

getNum (VPtr _) def
= error

69

Equality types play a crucial role in the typing rule for this instruction:

Lemma 6.3 (GETNUM).

xi : eq(VNum n) ▷ unit ⊢ getNum xi ⪅ ret unit : eq(n)

This rule tells us that if we have an equality type with the information that the Val xi contains

a number n, getNum xi will succeed and produce that same numerical value n. This property

about the output of the program is expressed as the output type. The specification program corre-

sponding to getNum on the implementation side is the trivial program that just returns unit. This

is because getNum operates on Vals—implementation values—which we manage using equality

types. Equality types have no computational content in specifications, so this typing rule follows

suit.

Equality types allow us to relate arbitrary values, even those used in specifications. The following

rule requires an implementation value to be equal to a specification value, and extracts conditional

expressions from conditional expressions on the implementation side.

Theorem 6.4 (IF).

Π ⊢ ti1 ⪅ ts1 : T Π ⊢ ti2 ⪅ ts2 : T
Π ∗ xi : eq(xs) ▷ unit ⊢ if xi then ti1 else ti2 ⪅ if xs then ts1 else ts2 : T

This rule says that if we can show that each branch of the conditional expression is well-typed,

then the entire expression is well-typed. An equality type is used to match the condition values on

both the implementation and specification sides, ensuring that the branches of the if statements

on both sides correspond to each other.

6.2.2. Permission Type Connectives

Now that we have a formal definition of permission types, we will also need connectives for

these types. In Chapter 5, we directly used the semantic definition of types as functions. For

70

(xi : T ▷ xs) ∗Π ⊑ xi : T ⊘Π ▷ xs
PERMSI xi : T ⊘Π ▷ xs ⊑ (xi : T ▷ xs) ∗Π

PERMSE

Π1 ⊢ ti ⪅ ts : T
Π1 ∗Π2 ⊢ ti ⪅ ts : T ⊘Π2

FRAME

(xi : T1 ▷ xs) ∗ (yi : T2 ▷ ys) ⊑ (xi, yi) : T1 ⊗ T2 ▷ (xs, ys)
PRODI

xi : T1 ⊗ T2 ▷ xs ⊑ (xi.1 : T1 ▷ xs.1) ∗ (xi.2 : T2 ▷ xs.2)
PRODE

(xi : T1 ▷ xs) ∗ (xi : T2 ▷ ys) ⊑ xi : T1 ⋆ T2 ▷ (xs, ys)
STARI

xi : T1 ⋆ T2 ▷ xs ⊑ (xi : T1 ▷ xs.1) ∗ (xi : T2 ▷ xs.2)
STARE

Figure 6.3: Typing rules for conjunction permission types.

example, for the FRAME rule in that chapter, we add a permission set using ∗ in the function that

represents the output type. If we want a syntactic type system, we cannot make use of this semantic

interpretation of types in typing rules. Rather, we will define new connectives for combining types

and prove typing rules for the way we want them to behave.

The first connectives we start with are connectives for expressing the product, or conjunction, of

permission types. Their typing rules are shown in Figure 6.3.

The first connective we present is the permission set conjunction type T ⊘ Π, which conjoins a

permission set Π to a permission type T. We need this connective to be able to add permission sets

directly to types, which is used in the frame rule. The semantic definition of this type connective

is as follows:

⊘ : PType(Ai, As)→ PermsSi×Ss → PType(Ai, As)

xi : (T ⊘Π) ▷ xs
def
= (xi : T ▷ xs) ∗Π

The PERMSI and PERMSE typing rules convert between ⊘ and its definition, for converting be-

tween the different formats used in input and output permissions. In input permissions, ∗ can be

used, but in output permissions, ⊘ is necessary. FRAME is the frame rule, which is just like the

71

previous FRAME rule from Chapter 5, but uses this new ⊘ definition. As the frame rule does not

affect the implementation program, the specification program is also unchanged.

The second conjunction connective we introduce is the product permission type T1 ⊗ T2, which

relates pairs on the implementation side to pairs on the specification side. We write values of

product types A × B as (a, b), and represent the first and second projections of a pair with the

notation p.1 and p.2 respectively.

⊗ : PType(Ai, As)→ PType(Bi, Bs)→ PType(Ai × Bi, As × Bs)

xi : (T1 ⊗ T2) ▷ xs
def
= (xi.1 : T1 ▷ xs.1) ∗ (xi.2 : T2 ▷ xs.2)

This connective relates implementation value xi to specification value xs by relating their first pro-

jections with T1 and their second projections with T2. This connective is useful for implementation

programs that use pairs, and will extract pairs to the specification program as well—an example

of which we will see in Section 6.6. Like the introduction and elimination rules for ⊘, PRODI and

PRODE fold and unfold the definition of ⊗, for use in either input permissions or output types.

The final conjunction connective we introduce is the separating conjunction permission type T1 ⋆

T2, which relates a single imperative value xi to a pair of specification values by relating xi to the

first specification value with T1 and to the second with T2.

⋆ : PType(Ai, As)→ PType(Ai, Bs)→ PType(Ai, As × Bs)

xi : (T1 ⋆ T2) ▷ xs
def
= (xi : T1 ▷ xs.1) ∗ (xi : T2 ▷ xs.2)

Like the other connectives, the STARI and STARE rules introduce and eliminate the connective by

folding and unfolding its definition. This connective is useful for when a single implementation

value is associated with multiple types, and through those multiple permission types, multiple

specification values. For example, a pointer to a linked list node would have multiple pointer

types, one for each value in the node. These types can be combined using the ⋆ connective, as we

will see in Section 6.5.

72

xi : T1 ▷ xs ⊑ inl xi : T1 ⊕ T2 ▷ inl xs
SUMI1 xi : T2 ▷ xs ⊑ inr xi : T1 ⊕ T2 ▷ inr xs

SUMI2

∀yi, ys, Π ∗ yi : T1 ▷ ys ⊢ ti1 ⪅ ts1 : T3 ∀zi, zs, Π ∗ zi : T2 ▷ zs ⊢ ti2 ⪅ ts2 : T3

Π ∗ xi : T1 ⊕ T2 ▷ xs ⊢ case xi of (λyi. ti1) (λzi. ti2) ⪅ case xs of (λys. ts1) (λzs. ts2) : T3
SUME

xi : T1 ▷ xs ⊑ xi : T1 ∨ T2 ▷ inl xs
ORI1 xi : T2 ▷ xs ⊑ xi : T1 ∨ T2 ▷ inr xs

ORI2

∀ys, Π ∗ xi : T1 ▷ ys ⊢ ti ⪅ ts1 : T3 ∀zs, Π ∗ xi : T2 ▷ zs ⊢ ti ⪅ ts2 : T3

Π ∗ xi : T1 ∨ T2 ▷ xs ⊢ ti ⪅ case xs of (λys. ts1) (λzs. ts2) : T3
ORE

Figure 6.4: Typing rules for disjunction permission types.

Next we introduce two connectives for disjunctive types. The typing rules for these are shown in

Figure 6.4.

The first disjunctive connective is the sum permission type T1 ⊕ T2, which relates sum types on

both the implementation and specification sides.

⊕ : PType(Ai, As)→ PType(Bi, Bs)→ PType(Ai + Bi, As + Bs)

inl xi : (T1 ⊕ T2) ▷ inl xs
def
= xi : T1 ▷ xs

inr xi : (T1 ⊕ T2) ▷ inr xs
def
= xi : T2 ▷ xs

inl _ : (T1 ⊕ T2) ▷ inr _ def
= False

inr _ : (T1 ⊕ T2) ▷ inl _ def
= False

We write inl x to represent the injection of a value x from the left type of a sum type, and inr for the

right type. In the case where the implementation and specification values are constructed from

different sides of their sum types, the resulting permission set is False, representing inconsistency.

The SUMI1 and SUMI2 rules introduce sum types T1⊕ T2 by applying the same injection operator

on both sides, while the SUME rule performs sum elimination on both sides using case expressions.

The first function in the case expression handles the case where the value comes from the left type,

and the second handles the right type. The ⊕ connective is useful for when the implementation

program makes use of sum types, and extracts to sum types as well in the specification program.

73

Recall that ITrees support an iter operation that uses sum types to signal whether a loop should

continue or finish iterating.

iter : (A→ itree E (A + B))→ A→ itree E B

The type A signifies that the loop should continue with a new value of type A, and a value of type

B ends iteration. This sum connective allows us to write a succinct typing rule for iter:

Theorem 6.5 (ITER).
∀yi, ys, yi : T1 ▷ ys ⊢ fi yi ⪅ fs ys : T1 ⊕ T2

xi : T1 ▷ xs ⊢ iter fi xi ⪅ iter fs xs : T2
ITER

T1 is used to relate the inputs to the iteration, and T2 is used to relate the outputs once iteration is

complete. This typing rule says that for an iter on the implementation side, we can extract an iter

on the specification side. Typechecking these iters reduces to typechecking their loop bodies. The

⊕ connective is used to ensure that for both ways the loop body can continue—either by iterating

again or finishing—the resulting values are related with the corresponding type, either T1 or T2.

The second connective is the disjunctive permission type T1 ∨ T2, which relates an implementation

value xi to a specification value using either T1 or T2.

∨ : PType(Ai, As)→ PType(Ai, Bs)→ PType(Ai, As + Bs)

xi : (T1 ∨ T2) ▷ inl xs
def
= xi : T1 ▷ xs

xi : (T1 ∨ T2) ▷ inr xs
def
= xi : T2 ▷ xs

The disjunctive introduction rules ORI1 and ORI2 introduce a disjunctive type T1 ∨ T2 from type

T1 or T2, respectively, by applying the appropriate constructor to the specification value. The

elimination rule ORE eliminates a disjunctive type T1 ∨ T2 by inserting a sum elimination into

the specification value. Similar to the SUME rule, ORE involves typing judgments and not just a

change in permission sets using ⊑, since the programs must be altered using case expressions.

74

This connective ∨ relates to ⊕ much in the same way as ⋆ relates to ⊗. ⊗ is useful for when

products are present in programs, and ⊕ is useful for when sums are present. ⋆ is useful for

relating one implementation value to multiple specification values, and ∨ is useful for relating

one implementation value to one of a choice of multiple specification values. As we will see

in Section 6.5, this property is useful for recursive objects like linked lists. A node pointer, for

example, may either point to the next node or be equal to null to represent the end of the linked

list, and ∨ can represent this structure.

Another useful connective is the existential permission type ∃(v : A), F v, which allows us to

“hide” the value v. For example, using an existential type, we can define the Nat permission type,

telling us that an imperative value is a number rather than a pointer:

Nat
def
= ∃n : N.eq(VNum n)

The existential type relates an implementation value xi to a dependent pair which contains the

hidden value v as well as the specification value that F v originally related xi to.

∃v : A.F v : PType(Ai, Σv:A(F v))

xi : (∃v : A.F v) ▷ {v, xs}
def
= xi : F v ▷ xs

Here, Σv:AT denotes a dependent pair type. We will write values of this type as {a, b}, and over-

load the projection notation of pairs, p.1 and p.2 for projections of dependent pairs as well.

With this definition, we can see that Nat has type PType(Val, Σn:NUnit), relating Vals on the imple-

mentation side to specification values of type Σn:NUnit, which is isomorphic to N itself. The use of

the equality type in the definition of Nat tells us that these two values represent the same natural

number, just packaged in different types.

The following typing rules introduce and eliminate existential types by folding and unfolding

their definitions:

75

Lemma 6.6 (EXI).

xi : F ys ▷ xs ⊑ xi : (∃v : A.F v) ▷ {ys, xs}

Lemma 6.7 (EXE).

xi : (∃v : A.F v) ▷ xs ⊑ xi : F xs.1 ▷ xs.2

For example, we can use EXI to convert an equality permission to Nat, which would relate imple-

mentation and specification values. Using EXE, we can later unfold the Nat type to use the fact

that the implementation and specification values they relate contain the same N value.

Finally, we define a vacuous permission type that always holds. While it is not a connective per

se, we introduce it here as well since it is a general permission type, defined for any state type. We

overload the notation True to define a type that represents holding the vacuous permission, using

our previous definition of True as a permission set.

True : PType(Ai,Unit)

xi : True ▷ unit
def
= True

True relates any implementation value to unit on the specification side. This is useful, for example,

for store operations, which do not return any useful information, just returning unit. The STORE

rule from Chapter 5 ignored the return value, but if we want a typing rule that does not use the

semantic definition of a type, we need something to describe this return value, which we can do

with True.

The following TRUEI rule allows us to introduce True at any point.

Lemma 6.8 (TRUEI).

Π ⊑ Π ∗ xi : True ▷ unit

This rule and the True type in general can also be useful for applying typing rules like SUME,

76

which have a Π permission set in the input permission, representing any other permissions cur-

rently held. If we hold no other permissions, we can use TRUEI to introduce one to fit the right

syntactic form to apply the rule. To eliminate these True types, we can always drop them, as with

any permission set, using CNSQ and Lemma 4.14.

As an example of using the typing rules presented so far, we consider a simple program which

multiplies a Val by 5. This program is represented by the ITree

yi ← getNum xi; ret (VNum (5× yi))

where xi is the input variable, a Val, and yi is an intermediate N value used to store the numeric

value of xi.

For this program to succeed, xi must be numeric and not a pointer, which we can assert using

input permission xi : Nat ▷ xs. Since Nat is defined as ∃n : N.eq(VNum n), the specification value

xs has type Σn : N.Unit. As for the output type, we will use Nat. This type relates the output

values of the implementation and specification programs, ensuring that they represent the same

N value.

Using these inputs, Heapster extracts the specification

ret {5× xs.1, unit},

which we can verify with the following typing derivation:

77

Example 6.9.

xi : eq(VNum xs.1) ▷ xs.2 ⊢ getNum xi

⪅ ret unit : eq(xs.1)

GETNUM

VNum (5× yi) : Nat ▷ {5× xs.1, unit}

⊢ ret (VNum (5× yi)) ⪅ ret {5× xs.1, unit} : Nat

RET

VNum (5× yi) : eq(VNum (5× xs.1)) ▷ unit

⊢ ret (VNum (5× yi)) ⪅ ret {5× xs.1, unit} : Nat

EXI

yi : eq(xs.1) ▷ unit ⊢ ret (VNum (5× yi))

⪅ ret {5× xs.1, unit} : Nat

EQCTX

xi : eq(VNum xs.1) ▷ xs.2 ⊢ yi ← getNum xi; ret (VNum (5× yi))

⪅ ret {5× xs.1, unit} : Nat

BIND

xi : Nat ▷ xs ⊢ yi ← getNum xi; ret (VNum (5× yi))

⪅ ret {5× xs.1, unit} : Nat

CNSQ

Reading from the bottom up, we first use CNSQ along with EXE to eliminate the existential in the

Nat type on xi. By unfolding this type, we get the equality type telling us that xi is a number with

value xs.1. Next, we apply the BIND rule to typecheck the two halves of the implementation and

specification programs separately. To do this, however, we need to add a ret unit to the front of the

specification program, which we can do via the monad laws. The first halves of the two programs

are easily discharged with GETNUM and has output type eq(xs.1). The second halves quantify

over values yi and ys to be related by eq(xs.1), which means that ys = unit. Continuing upward,

EQCTX is used to add the VNum and multiplication by 5 to the equality type. Next, EXI is used to

“fold up” the equality type, resulting in the Nat type for implementation value VNum (5× yi) and

specification value {5× xs.1, unit}. Finally, at the top, rule RET completes our proof, as the two

values being returned match the values related by the type in the input permission set.

6.3. Pointer Types

In this section, we define pointer types, which differ in two ways from those defined in Chapter 5.

First, they naturally must include specification values. Second, we add another parameter to the

type, a natural number offset value. A pointer may be associated with multiple pointer permis-

sions, as mentioned earlier with the example of linked lists. These offset values represent an offset

78

within a block of memory, so that a pointer can have multiple pointer permissions with different

offsets to represent different memory cells. Linked lists and arrays will both use offsets. Linked

lists will be presented in Section 6.5, and arrays will be presented in Section 6.4, along with the

definitions and types for memory allocation and deallocation.

We now specialize our state type to Mem, and define memory operations for use in imperative

programs. Instead of just being the ITree with a single load or store event as in Chapter 5, the

definitions of load and store are slightly more complex when defined using Modify. We will infor-

mally describe the definitions of these ITrees here, and the full definitions can be found in the Coq

formalization.

load : Val→ itree EMem Val

store : Val→ Val→ itree EMem Unit

The load instruction uses a Modify event with the identity function, which does not update the

memory and just returns it for inspection. Using this Mem, the instruction can then use read to

look up the value to load from this memory and return it. The store instruction uses a Modify

event to execute the store operation using write. However, in case of failure, it must still return a

default value as the function in the Modify event has type Mem → Mem. To detect failure, we use

the returned state from the Modify event to check if the write would have succeeded in the function. If

load or store fail, for example due to an invalid pointer or trying to access memory using a VNum,

then they may result in an error program instead.

To compute the final address given a pointer and offset, we use a function offset : Val → N →

Val. The function application offset p o increases the offset of p by o if it is a VPtr, and leaves

p unchanged if it is a VNum. With this definition in hand, we can define pointer permission

types, similar to the previous definition in Chapter 5. The only difference is that there, πread and

πwrite were permissions over Mem, whereas here, they are over Mem× Unit, so we just ignore the

79

specification state of unit. Like before, rw is either read or write, and we refer to T—which has the

type PType(Val, As)—as the content type.

ptr((rw, o) 7→ T) : PType(Val, As)

xi : ptr((rw, o) 7→ T) ▷ xs
def
=

⊔

v∈Val[πrw(a, v)] ∗ v : T ▷ xs if offset xi o = VPtr a

False if offset xi o = VNum _

One key part of how functional specifications differ from imperative implementation programs

is that pointers are erased in the specification. To do this, pointers are related to the same spec-

ification value as the imperative value being pointed to. Thus, the pointers themselves become

transparent in terms of how they are represented on the specification side. This is why the pointer

type has the same type as the content type, PType(Val, AS). For example, if we have a pointer type

with a content type of Nat, then that pointer type relates a Val on the implementation side to a

dependent pair representing the natural number on the specification side. The specification value

is the same as the value if the program on the implementation side did not involve pointers at all,

but just had the Val the pointer points to.

With this definition, we can now present the typing rules for pointer types, shown in Figure 6.5.

One new instruction used in these rules is isNull. The ITree isNull v checks whether a Val v is

VNum 0, our representation for the null pointer.

isNull : Val→ itree EMem B

isNull (VNum 0) def
= true

isNull (VNum _) def
= error

isNull (VPtr _) def
= false

If the value is a VNum but not 0, then it does not represent a valid pointer, and so results in an

error computation.

80

xi : ptr((rw, o) 7→ T) ▷ xs ⊢ isNull xi
⪅ ret unit : eq(false)⊘ (xi : ptr((rw, o) 7→ T) ▷ xs)

ISNULL1

xi : eq(VNum 0) ▷ xs ⊢ isNull xi ⪅ ret unit : eq(true)
ISNULL2

xi : ptr((rw, 0) 7→ eq(yi)) ▷ unit ⊢ load xi
⪅ ret unit : eq(yi)⊘ (xi : ptr((rw, 0) 7→ eq(yi)) ▷ unit)

LOAD

xi : ptr((write, 0) 7→ T)) ▷ xs ⊢ store xi yi
⪅ ret unit : True⊘ (xi : ptr((write, 0) 7→ eq(yi)) ▷ unit)

STORE

xi : ptr((write, o) 7→ T) ▷ xs ⊑ xi : ptr((read, o) 7→ T) ▷ xs
PTRWEAK

xi : ptr((read, o) 7→ eq(yi)) ▷ unit ⊑ xi : ptr((read, o) 7→ eq(yi)) ▷ unit ∗
xi : ptr((read, o) 7→ eq(yi)) ▷ unit

READDUP

o1 ≥ o2

xi : ptr((rw, o1) 7→ T) ▷ xs ⊑ (offset xi o2) : ptr((rw, o1 − o2) 7→ T) ▷ xs
PTROFF

(xi : ptr((rw, o) 7→ eq(yi)) ▷ unit) ∗ (yi : T ▷ ys) ⊑ xi : ptr((rw, o) 7→ T) ▷ ys
PTRI

∀yi, Π ∗ (xi : ptr((rw, o) 7→ eq(yi)) ▷ unit) ∗ (yi : T1 ▷ xs) ⊢ ti ⪅ ts : T2

Π ∗ (xi : ptr((rw, o) 7→ T1) ▷ xs) ⊢ ti ⪅ ts : T2
PTRE

Figure 6.5: Typing rules for pointer types.

81

The ISNULL1 rule handles the case where the Val xi is not null, because it has a pointer type.

The output type reflects this fact by stating that the result of isNull is false, but also must maintain

the pointer type on xi from the input permission. Since this is a permission set, not a permission

type, it is added to the output type using ⊘. ISNULL2 handles the other case where xi is null.

Unlike ISNULL1, the output type does not need to maintain the equality permission in the input

permission, since equality permissions are duplicable. Before using this typing rule, the equality

permission could have been duplicated and “stored” to use after ISNULL2 using FRAME.

The LOAD rule differs slightly from the analogous rule in Chapter 5. Instead of allowing any

content type in the input pointer permission, this rule supports only equality types. This is due

to our usage of permission types, rather than a function for the output permission. We cannot

express that xi should now point to a value equal to the return value of the load without using

the fact that types are semantically defined as functions, as was done in Chapter 5. Rather, we

use equality types for the content types. When used in conjunction with the PTRI and PTRE rules

described below, they are just as expressive as the version in the previous chapter. The STORE

rule, on the other hand, is very similar to the one in Chapter 5. The only difference is that it uses

True in its output type, since store does not return any useful value. The output types of both these

rules use ⊘ to maintain the input permission set, just like ISNULL1. This is necessary as pointer

permissions may not be duplicable and would need to be preserved by these typing rules if they

are to be used later on. Since the type system aims to erase pointers in the extracted specifications,

the extracted programs for these rules are ret unit.

The PTRWEAK rule weakens a pointer-write type into a pointer-read type, lifting the result we

had in Lemma 5.9. Once we have a pointer-read type, the READDUP rule allows us to duplicate

it, using the result from Lemma 5.10. READDUP would also allow us to create an alternative rule

for load when the type for xi is known to be a duplicable pointer-read type, where we do not have

to maintain the pointer permission in the output type, like with the ISNULL2 rule.

PTROFF allows us to use pointer types where the offset is not 0. The previous LOAD and STORE

rules only work with such types, but PTROFF allows a pointer type with non-zero offset to be

82

converted to one with offset 0. This modifies the value that holds the pointer type, changing its

value using offset.

Finally, the pair of rules PTRI and PTRE introduce and eliminate non-equality content types from

pointer types. The introduction rule allows for a content type to be created from an equality

type, if the value that the pointer points to has some other type. This is similar to CAST, which

works on regular equality types, not those inside a permission type. PTRI can also be thought of

as eliminating the value that the pointer points to, hiding it inside the pointer type. Conversely,

PTRE can be thought of as introducing the value that the pointer points to, yi. With access to this

value, this rule allows us to “move” the content type T1 out of the pointer type by applying it to

yi. Once T1 is outside the pointer type, it can then be manipulated using other typing rules.

As alluded to in the discussion of Example 5.20, we can now redo the example with more infor-

mative output permission types using PTRI and PTRE to manipulate content types. Recall the

implementation program, where we have a value p:

p′ ← load p;

store p′ (VNum 1)

The specification program is just ret unit, since pointer operations are erased in specifications. For

the input permission set, we will require that p point to another pointer which can be written to,

just as in example 5.20. The input permission set that expresses this is

p : ptr((read, 0) 7→ ptr((write, 0) 7→ True)) ▷ unit.

For the output permissions, we use

True⊘ p : ptr((read, 0) 7→ ptr((write, 0) 7→ eq(VNum 1))) ▷ unit,

expressing the fact that p now points to a pointer that in turn points to a value of 1. Unlike in

83

Chapter 5, we will skip the possibility of circularity in memory. As discussed in Section 1.2, this

possibility of circularity is outside the scope of programs handled by Heapster, since it would

greatly increase the complexity of automated typechecking. It would still be possible to manually

typecheck the program with the presence of circularity in the theory of Heapster, for which the

typing derivation would be similar to that of Example 5.21.

Example 6.10. For space reasons, we will split up the typing derivation, going from the bottom

up.

Part 1 Part 2

p : ptr((read, 0) 7→ eq(p′)) ▷ unit ∗ p′ : ptr((write, 0) 7→ True) ▷ unit ⊢ p′ ← load p; store p′ (VNum 1)

⪅ ret unit : True⊘ p : ptr((read, 0) 7→ ptr((write, 0) 7→ eq(VNum 1))) ▷ unit

BIND

p : ptr((read, 0) 7→ ptr((write, 0) 7→ True)) ▷ unit ⊢ p′ ← load p; store p′ (VNum 1)

⪅ ret unit : True⊘ p : ptr((read, 0) 7→ ptr((write, 0) 7→ eq(VNum 1))) ▷ unit

PTRE

Part 1:

p : ptr((read, 0) 7→ eq(p′)) ▷ unit ⊢ load p

⪅ ret unit : eq(p′)⊘ p : ptr((read, 0) 7→ eq(p′)) ▷ unit

LOAD

p : ptr((read, 0) 7→ eq(p′)) ▷ unit ∗ p′ : ptr((write, 0) 7→ True) ▷ unit ⊢ p′ ← load p

⪅ ret unit : eq(p′)⊘ p : ptr((read, 0) 7→ eq(p′)) ▷ unit⊘ p′ : ptr((write, 0) 7→ True) ▷ unit

FRAME

Part 2:

p′′ : ptr((write, 0) 7→ True) ▷ unit ⊢ store p′′ (VNum 1)

⪅ ret unit : True⊘ p′′ : ptr((write, 0) 7→ eq(VNum 1)) ▷ unit

STORE

p : ptr((read, 0) 7→ eq(p′′)) ▷ unit ∗ p′′ : ptr((write, 0) 7→ True) ▷ unit ⊢ store p′′ (VNum 1)

⪅ ret unit : True⊘ p : ptr((read, 0) 7→ eq(p′′)) ▷ unit ∗ p′′ : ptr((write, 0) 7→ eq(VNum 1)) ▷ unit

FRAME

p′′ : eq(p′) ▷ Unit⊘ p : ptr((read, 0) 7→ eq(p′)) ▷ unit⊘ p′ : ptr((write, 0) 7→ True) ▷ unit ⊢ store p′′ (VNum 1)

⪅ ret unit : True⊘ p : ptr((read, 0) 7→ ptr((write, 0) 7→ eq(VNum 1))) ▷ unit

CNSQ

The first rule we apply is PTRE, to move the content type out of the pointer type. This introduces

84

the value that p points to, which we name p′. This is necessary now, rather than after applying

BIND, because the intermediate type for BIND needs to have p′ in scope to refer to it. This inter-

mediate type includes eq(p′) so we can link the output type we get from the first premise of the

BIND to the input permissions for the second premise.

Part 1 of the derivation typechecks the first load p portion of the implementation program. The

type for p′ is not needed to apply LOAD, but unlike in Example 5.20, we cannot just drop it, since

it is used in part 2 of the proof. Instead, so we remove it only for the application of LOAD using

FRAME, and the resulting types are in exactly the right format to apply LOAD.

Part 2 is more complicated. The BIND rule quantifies over any intermediate value returned by the

load in the first portion of the program, so we have another value p′′ that we know is equal to p′

through an equality type. We use CNSQ to unify the two values, p′ and p′′, in the input permission.

This involves using PERMSE to unfold the definition of ⊘, and EQDUP to duplicate the equality

type, since we will need one for each remaining use of p′ in the input permission. For the portion

p : ptr((read, 0) 7→ eq(p′)) ▷ unit, we use EQSYM on one of the equality types then PTRI to update

this pointer’s content type. For the second portion p′ : ptr((write, 0) 7→ True) ▷ unit, we use CAST,

thus removing all uses of p′. This use of CNSQ also strengthens the output type to include p′′,

which will be needed for our application of STORE later on. To show that the change in output

type is valid, we use PERMSE and PERMSI to unfold and later recreate the ⊘, and apply PTRI.

Finally, we remove the types for p from both the input and output types using FRAME, and we

then have the exact types to conclude by applying STORE.

This typing derivation may not seem to give us anything useful on the specification side. Though

the specification program does not do anything and the types do not relate to any useful specifica-

tion values, this derivation is still useful for extracting specifications. The key is that we now have

an output type with information about the functionality of the memory operations in the imple-

mentation program. As we saw in Example 6.9, an equality type like this can be useful for relating

implementation values to specification values. If we follow the pointer that p points to later in

the program, the types will contain the information that the value is VNum 1, and Heapster could

85

extract a specification that immediately returns the value 1, without any memory operations.

6.4. Array Types

This section introduces types for describing arrays, rather than single memory cells. These array

types are essential for describing the typing rules for malloc and free, which manage blocks of

memory using arrays.

Array types relate imperative arrays of length l to vectors of length l, where each element of the

arrays and vectors are pairwise related using the array type’s content type. We will write Vect T l

for the type of vectors of Ts with length l. We use ⟨x, y, z⟩ to denote a vector with elements x, y, z,

the notation v1 ++ v2 for v1 and v2 appended together, and v[i] for the ith element of a vector.

Semantically, array types are defined using the iterated separating conjunction of l pointer types

with a consistent content type T : PType(Val, As) for each pointer type:

arr((rw, o, l) 7→ T) : PType(Val,Vect As l)

xi : arr((rw, o, l) 7→ T) ▷ xs
def
= *

0≤i<l
xi : ptr((rw, o + i) 7→ T) ▷ xs[i]

As with pointer types, rw is either read or write, and o is a natural number offset in the memory

block.

This type could also be defined as the ⋆ of pointer types, but the specification value would then

be combined as pairs. Instead of a vector on the specification side, we would instead have nested

pairs—an equivalent type, but much less convenient to work with.

The typing rules for array types are shown in Figure 6.6.

The first two rules, PTRARR and ARRPTR, convert between pointer types and array types where

the length of the array is one. This is how we use values in arrays, by converting them to pointers

and then using our previously-defined pointer rules. We also need rules for obtaining these array

types of length one from larger array types. This is done by the next rule, ARRSPLIT. This rule

86

xi : ptr((rw, o) 7→ T) ▷ xs ⊑ xi : arr((rw, o, 1) 7→ T) ▷ ⟨xs⟩
PTRARR

xi : arr((rw, o, 1) 7→ T) ▷ xs ⊑ xi : ptr((rw, o) 7→ T) ▷ xs[0]
ARRPTR

∀xs1 , xs2 , Π ∗ xi : arr((rw, o, l′) 7→ T1) ▷ xs1∗
xi : arr((rw, o + l′, l − l′) 7→ T1) ▷ xs2

⊢ ti ⪅ fs xs1 xs2 : T2

Π ∗ xi : arr((rw, o, l) 7→ T1) ▷ xs ⊢ ti ⪅ trySplit xs l′ fs : T2
ARRSPLIT

xi : arr((rw, o, l′) 7→ T) ▷ xs1∗
xi : arr((rw, o + l′, l) 7→ T) ▷ xs2

⊑ xi : arr((rw, o, l + l′) 7→ T) ▷ (xs1 ++ xs2)

ARRCOMBINE

Figure 6.6: Typing rules for arrays.

can be applied any time to split an array type, by extracting a trySplit program on the specification

side. The program trySplit v l′ f attempts to split the vector v at index l′, and passes the two halves

of the split vector to a continuation f , which we can proceed with in the typechecking process. To

typecheck an array access, we would have to use this rule at most twice to obtain an array type of

length one, at which point we can use ARRPTR.

Crucially, trySplit can fail and result in error if we try to split at an invalid index, one that is greater

than the length of the vector. This is the only rule which introduces error on the specification side,

aside from ERR. This acts as a dynamic check in the specification program rather than requiring

this check be statically performed during typechecking, as a precondition on the typing rule. This

is because the bounds check we are trying to perform is in general undecidable statically, and

we do not want to have to fully give up by using ERR when the validity of the check cannot be

determined during typechecking. Instead, this rule shifts the burden of the bounds check to the

specification, so the user can later prove that it cannot occur in the specification, rather than having

to leave this task to the typechecker.

The final array rule is ARRCOMBINE, which combines two array types. While this may not seem

useful right now, we will soon see the FREE rule for deallocating memory, which does require a

single array type for the block of memory we are trying to free, rather than several disjoint array

types.

Now that we can manipulate array types, we can finally discuss manual memory management.

87

We first introduce the malloc and free instructions:

malloc : N→ itree EMem Val

free : Val→ itree EMem Unit

The malloc instruction takes the size of the block to allocate as an argument, and appends a block

of that size to the Mem’s list of blocks. This operation never fails, as our memory model is un-

bounded. It then returns a pointer value to the front of the newly allocated block.

The free instruction is more involved. Calling free on a VNum or a VPtr that does not refer to the

first value of a block will result in error—deallocating only a portion of a block is not allowed. If

the argument is a valid pointer to the front of a block, then the contents of the block are erased, by

removing them from the partial function that represents the values in the block.

While having a write-array type for the entire block would permit us to free this block (since

we would have write access to every element in the block, and free does not remove the block

itself, but every element in the block), we do not yet have any permission definitions that would

allow for the state change performed by malloc. To remedy this, we first must define two new

permissions used in the typing rules for malloc and free: πalloc and πblock.

First, we define πalloc(b), which represents exclusive ownership of all unallocated blocks, those

numbered b or higher. In a program where no memory is allocated yet, πalloc(0) would be held,

giving us ownership of the entire Mem.

πalloc(b)
def
= ({ (s1, s2) | the number of blocks in s1 and s2 are the same, and

blocks ≥ b do not change between s1 and s2 },

{ (s1, s2) | blocks < b do not change between s1 and s2 },

{ s | there are b blocks in s })

The rely requires that nobody else modify block b and above in memory, which represent the

88

unallocated blocks. The guarantee permits the holder of this permission to modify those blocks

arbitrarily, as long as they do not change existing allocated blocks below b. The precondition

formalizes the fact that the argument b should represent the current number of allocated blocks.

We then define the Πalloc permission set to existentially quantify over the number of currently-

allocated blocks, allowing us to write generic typing rules without having to know exactly how

many allocations have already occurred.

Πalloc
def
=

⊔
b∈N

[πalloc(b)]

While this permission is sufficient to typecheck malloc, we will define another permission which

we will also use in its typing rule, related to deallocation. The permission πblock(a, n) encapsulates

the precondition that that the address a points to the front of a block of size n.

πblock(a, n) def
= ({ (s1, s2) | the size of the block that a points to is the same in both s1 and s2 },

=,

{ s | a points to the front of a block of size n in s })

The πblock(a, n) permission, with its guarantee of =, does not give us the ability to make more

changes—pointer-write permissions to every value in the block already suffice to typecheck the

deallocation of a block. Rather, this permission tells us that a points to the front of a block, which

is what we need to be able to safely use it with free. It also stores the size of the block, n, so we

know exactly what array type we need to hold—the length of the array—before we can use free.

As a side effect of the precondition having to be stable under the rely, Rπblock(a,n) also prevents other

code from changing the size of the block.

Using πblock, we can then define the block permission type to attach this permission to an imper-

89

ative value:

block(n) : PType(Val,Unit)

xi : block(n) ▷ unit
def
=

[πblock(a, n)] if xi = VPtr a

False if xi = VNum _

Now we are ready to present the typing rule for malloc:

Theorem 6.11 (MALLOC).

xi : eq(VNum n) ▷ unit ∗Πalloc ⊢ malloc xi

⪅ ret (⟨unit, . . .⟩, unit) : arr((W, 0, n) 7→ True) ⋆ block(n)⊘Πalloc

This rule typechecks a malloc as long as we hold the allocation permission Πalloc, which is returned

back to us in the output type for future allocations. The output type gives the pointer value

returned by the malloc two separate types, combined using the ⋆ connective. The first is the array

type, where the content type is the vacuous True. The second is the block type, which will be

required to use the FREE typing rule for free. This output type forces the specification program to

return a vector of n unit values representing the contents of the array, paired with an additional unit

due to the block permission. This rule effectively moves one block’s worth of permissions from the

Πalloc permission set and gives it to us as an array type. The use of the permission set means that

the Πalloc set does not change outwardly, since it keeps the number of currently-allocated blocks

hidden in its definition.

Theorem 6.12 (FREE).

xi : arr((W, 0, n) 7→ True) ⋆ block(n) ▷ xs ⊢ free xi ⪅ ret unit : True

The FREE rule requires us to hold the output types from the MALLOC rule, including the True

90

content type for the array, and not a stronger one. Thankfully, this is possible to achieve. Even

if the content changed between allocation and deallocation, we can always introduce a new True

type using TRUEI and drop the other content type. This is not a straightforward process, though—

any change to the content type of the array has to be done one element at a time, using the array

typing rules to split the array, convert to pointer types and back, and then recombine them into a

single array type.

One difference between this type system that we are defining and the Heapster tool is the Πalloc

permission set. This construct is not in the Heapster tool, but it is necessary to prove the MALLOC

rule, since we must have a permission that allows the allocation to occur. In Heapster, this per-

mission to allocate new memory is implicitly present at all points during typechecking, which is

sound since it is not duplicated, as the tool only deals with single-threaded code.

6.5. Recursive Types

Recursive permission types allow us to relate recursive data structures on the implementation

side to recursive data types on the specification side. To match the implementation in Heapster,

the recursive types in this type system will be iso-recursive, and will require recursive types to

be explicitly folded and unfolded. A recursive type will be written as µX. T, where X is free in T

and refers to the recursive occurrence of the overall type. Alternatively, if we have the generator

function λX. T defined separately as F, it can be written as µF.

Before we define the behavior and semantics of the recursive permission type, we must introduce

some of the building blocks we need. First, we define the lattice operations for permission types,

PType(A, B), using the pointwise lifting of the lattice operations for permission sets, PermsSi×Ss .

We will again overload the notation for these operations, like ⊑ and ⊔. Then, we can use the

Knaster-Tarski theorem [Tar55] to construct the greatest fixed point of monotone functions F :

PType(A, B)→ PType(A, B).

νF def
=

⊔
{ T | T ⊑ F T }

We use the greatest fixed point because greater elements of the lattice represent weaker permis-

91

sions.6 We wish to use the weakest permission possible that satisfies the fixed point constraints

we want, to avoid introducing extra, undesired capabilities to programs.

Now that we can define greatest fixed points, we can work towards defining the recursive permis-

sion type in terms of it. To guide us towards a definition, we consider the example of a linked list.

The following diagram represents the list [1, 2]:

1 2 0p

Recall that we use the number 0 as a null pointer, as in the isNull instruction.

We wish to write a type for a pointer pointing to a linked list using our existing permission types

and an assumed recursive type µX. T. Each node of the linked list has two values—one for the

actual value of the element, and another for the pointer to the next node. This suggests two types

conjoined with the ⋆ connective. We use ⋆ rather than ⊗ since there is only one implementation

value: a pointer which we know points to a value and, when incremented to the next pointer

address, a pointer to another linked list. We must also handle the base case, where the pointer to

the linked list is null. Putting this all together, we get the following recursive type:

µX. eq(VNum 0) ∨ (ptr((rw, 0) 7→ Nat) ⋆ ptr((rw, 1) 7→ X))

An imperative value with this type is either the null pointer or it points to a numeric value and

another value of this recursive type. Note that the two values in a single node must be in the same

block of memory, due to the use of the offset value, but different nodes can be in different blocks.

As for the specification type, intuitively, recursive permission types should relate pointers on the

implementation side to elements of recursive types on the specification side. In this case, the

specification type should be List Σn:NUnit, due to the use of Nat for the values in the linked list.

But looking at our definition above, its type is roughly Unit+Σn:NUnit×X, where X is a recursive

6In the paper by He et al. [He+21], the lattice is inverted compared to the presentation in this dissertation. Corre-
spondingly, the semantic definition of the recursive type is given by the least fixed point, though it is identical to this
definition.

92

occurrence of this type. This is the standard way of defining the list type using recursive types,

but we will need some way of going between this representation and the closed representation of

List Σn:NUnit.

More generally, specification values will be values of type Z, where Z is a fixed point of the

generator function G. We also require functions fold : G Z → Z and unfold : Z → G Z that

form an isomorphism. As we will see, G is formally connected to the definition of the recursive

type. For example, if the specification values should be lists of type A, similar to above, then

G def
= λZ.Unit+ (A× Z). The type List A is a fixed point of this function, and we can then define

the fold and unfold functions:

fold : (Unit+ A× List A)→ List A

fold (inl unit)
def
= []

fold (inr (h, t)) def
= h :: t

unfold : List A→ (Unit+ A× List A)

unfold []
def
= inl unit

unfold (h :: t) def
= inr (h, t)

It can then be proven that these functions form an isomorphism, that unfold (fold x) = x and

fold (unfold x) = x.

Now, looking at our example above at the function that generates the recursive type,

λX. eq(VNum 0) ∨ (ptr((rw, 0) 7→ Nat) ⋆ ptr((rw, 1) 7→ X)),

its type is

PType(Val, List Σn:NUnit)→ PType(Val,Unit+ Σn:NUnit× List Σn:NUnit).

93

xi : F (µF) ▷ xs ⊑ xi : µF ▷ fold xs
FOLD xi : µF ▷ xs ⊑ xi : F (µF) ▷ unfold xs

UNFOLD

Figure 6.7: Typing rules for recursive types.

In general, the return type of the generator function uses the “unfolded” type G Z. The function’s

type is

PType(A, Z)→ PType(A, G Z).

This is how the definition of the recursive type is linked to the type of its specification value. The

body of the recursive type determines the definition of G, and we obtain Z by finding a fixed point

of G.

Finally, the overall type of the recursive type in our example is

PType(Val, List Σn:NUnit).

The type List Σn:NUnit is the fixed point Z in the definitions above. In general, the overall type of

a recursive type is

PType(A, Z).

Now, we can define the recursive type µF, where F : PType(A, Z) → PType(A, G Z), using the

greatest fixed point combinator. Since ν must be applied to a function where the input and output

types are the same, we compose the unfold operation with F to make the types match.

µF : PType(A, Z)

µF def
= ν(λT, xi, xs. xi : F T ▷ unfold xs)

With the recursive type finally defined, we can present the typing rules for recursive types, which

are found in figure 6.7. There are only two rules, FOLD and UNFOLD, which fold and unfold the

type, along with the specification value. For an example of recursive types in action, Section 6.6

94

True ⊑ xi : (µX. eq(xi) ∨ (T ⋆ ptr((rw, o) 7→ X))) ▷ ⟨⟩ REFLR

xi : (µX. eq(yi) ∨ (T ⋆ ptr((rw, o) 7→ X))) ▷ xs∗
yi : (µX. eq(zi) ∨ (T ⋆ ptr((rw, o) 7→ X))) ▷ ys

⊑ xi : (µX. eq(zi) ∨ (T ⋆ ptr((rw, o) 7→ X))) ▷ xs ++ ys

TRANSR

Figure 6.8: Typing rules for reachability types.

will include uses of recursive types.

Reachability types are a specialization of recursive types for the case of linked lists where we end

the linked list at a value y, rather than a null pointer. This is useful for reasoning about portions of

linked lists from the starting pointer down to another pointer y, rather than the entire linked list,

and is analogous to the notion of list segments in separation logic [BCO05]. Reachability types are

named as such to capture the notion that the end value y is reachable in 0 or more steps from the

value holding the reachability type.

Formally, a reachability type is a type of the form

µX. eq(y) ∨ (T ⋆ ptr((rw, o) 7→ X))

The base case of the linked list is represented by the equality type. Otherwise, there is a pointer to

the next node, represented by the pointer type with the recursive content type. The value stored

at each node of the linked list is represented by the type T : PType(Val, A). Then, this reachability

type has type PType(Val, List A), similar to our example above. For lists, we will overload the

notation for vectors, writing a list as ⟨a, b, . . .⟩ and the concatenation of two lists as l1 ++ l2. For

this special case of reachability types, we can write reflexivity and transitivity rules due to its

straight-line structure, shown in Figure 6.8.

The REFLR rule shows that xi is always reachable from itself. Since it is reachable from itself

in 0 steps, this type relates the value to an empty list on the specification side. The TRANSR

rule represents transitivity of reachability types, allowing us to combine reachability types, which

appends their specification values.

95

6.6. A Bigger Example

To illustrate the use of some of the typing rules we have presented in this chapter, we can type-

check the following imperative program which computes the length of a linked list pointed to by

a value ptr.

iter (λ (v : Val, p : Val).

n← getNum v;

b← isNull p;

if b

then ret (inr (VNum n))

else p′ ← load (offset p 1); ret (inl (VNum (n + 1), p′)))

(VNum 0, ptr)

This program uses iter to loop, changing a counter variable v and a pointer p between iterations.

These two variables start at values VNum 0 and ptr respectively. The body of the iter first gets the

numerical value n from v, then checks if we are at the end of the linked list. If we are at the end of

the list, we return the counter value n and stop iterating. Otherwise, if p is not null, then we get

the pointer to the next node of the linked list, and continue iterating with an incremented counter

and the next node pointer.

The functional specification for this implementation program is the following program, given a

96

list lst, containing values of some type A:

iter (λ (i : Σn:NUnit, l : List A).

case unfold l of

λ_ : Unit. ret (inr i)

λ(h : A, t : List A). ret (inl ({i.1 + 1, unit}, t)))

({0, unit}, lst)

The specification program is similar in structure to the implementation one, also using iter with a

counter variable i and a list variable l. Then to check whether we are done iterating, we perform a

case analysis on the unfold of l. In the base case, where this value is a Unit, we return the counter

value i and stop iterating. In the recursive case, we continue iterating with an incremented counter

and the rest of the list t.

Now we can show that these two programs are related via the typing judgment. One useful type

we will use is the recursive type for linked lists defined in Section 6.5, which we will name ListT,

which we define in terms of a rw which is read or write, and a permission type T : PType(Val, A).

ListTrw,T : PType(Val, List A)

ListTrw,T
def
= µX. eq(VNum 0) ∨ (ptr((rw, 0) 7→ T) ⋆ ptr((rw, 1) 7→ X))

The rw argument applies to all the pointer permissions in the recursive type, and the type T

describes the value held at each node, relating each implementation value to a specification value.

The input permission set will be ptr : ListTread,T ▷ lst, using the recursive type to relate the pointer

to a linked list, ptr, and the functional list, lst. Since the program does not need write access to the

pointers, we use the read tag for our pointer permissions. Our programs do not actually use the

value at each node of the linked list, so we keep the type that describes them, T, abstract. We could

use, for instance, Nat in place of T to describe linked lists of numerical Vals on the implementation

97

side and lists of Σn:NUnit on the specification side. As for the output type, we use Nat, which

ensures that the output values of both programs represent equal numbers.

Since the example will be too large to present diagrammatically as we have done so far, we will

describe it informally, adding in snippets of what the proof derivation looks like at important or

interesting spots. The full typing derivation can be found in the Coq formalization. While we will

mention notable uses of typing rules here, some will be skipped.

Initially, we would like to use ITER to relate the two programs formed by iters by relating their

loop bodies. To do this, we first need types relating their initial values. We already have the type

ListTread,T to relate ptr and lst, but we need a type to relate the two counter variables. We can create

such a type using EQREFL and EXI to obtain VNum 0 : Nat ▷ {0, unit}. Then, we can combine the

two types using PRODI for a single type to relate the two pairs of initial values for the two iters:

(VNum 0, ptr) : Nat⊗ ListTread,T ▷ ({0, unit}, lst)

Now we are ready to use ITER. Once we do, we face the proof obligation

(n, p) : Nat⊗ ListTread,T

▷ (i, l)
⊢

i← getNum n;

b← isNull p;

if . . .

⪅

case unfold l of

λ . . .

λ . . .

: (Nat⊗ ListTread,T)⊕Nat

with new iteration variables n, p, i, and l, rather than the initial values for the iter.

Here, Nat⊗ ListTread,T can be thought of as the loop invariant. It must relate the iteration variables

on both sides before each iteration, and must be reestablished if we are continuing to iterate with

new values.

First, we discharge the getNum using BIND and GETNUM, after adding a ret unit no-op to the

specification side using the monad laws. Next is case analysis on both sides. To do this, we unfold

98

the recursive type using UNFOLD:

p : ListTread,T ▷ l ⊑ p : eq(VNum 0) ∨ (ptr((read, 0) 7→ Nat) ⋆ ptr((read, 1) 7→ ListTread,T)) ▷ unfold l

By unfolding this recursive type, we now have a disjunctive type at the top level, and so we can

use ORE to perform a case analysis.

For the first case, we are at the end of the linked list.

p : eq(VNum 0) ▷ unit ∗ . . . ⊢
b← isNull p;

if b . . .
⪅ ret (inr i) : (Nat⊗ ListTread,T)⊕Nat

The types tell us that the pointer p is null, and that the specification value unfold l is unit, repre-

senting the empty list. We can then discharge the isNull with BIND and ISNULL2, since we have

the equality type on p. Lastly, we need to handle the if statement. We know that the boolean b

is true from the output type of ISNULL2: b : eq(true) ▷ unit. However, this does not let us imme-

diately enter the true branch of the if statement. We need to use the IF rule, which requires an if

statement on the specification side as well. To remedy this, we replace the specification side with

the equivalent program if true then ret (inr i) else error. We can then apply IF, handling the else

case using ERR. Finally, for the then case, we can handle the two rets on both sides using RET,

once we package the permissions back into the appropriate form for the output permission, using

SUMI2, EXI, and EQCTX. This successfully shows that when both programs finish iterating, they

return the same numeric value for the length of the list.

The other case from applying ORE is the case where the linked list is not empty:

p : ptr((read, 0) 7→ T) ⋆

ptr((read, 1) 7→ ListTread,T)

▷ (h, t) ∗ . . .

⊢
b← isNull p;

if b . . .
⪅ ret (inl ({i.1 + 1, unit}, t)) :

(Nat⊗ ListTread,T)

⊕Nat

Here, the types tell us that p points to a value of type T, and p + 1 points to the next node of the

99

linked list. On the specification side, the value unfold l is a pair with the head of the list, h, and the

tail of the list, t.

As before, the types tell us whether p is null, and we can use BIND and ISNULL1 to discharge

the isNull instruction on the implementation side. As before, this requires us to add a no-op to the

specification side. Similarly, we also apply IF and can then focus on the else case of the if statement:

p : ptr((read, 1) 7→

ListTread,T) ▷ t

∗ n : eq(i.1) ▷ unit

⊢
p′ ← load (offset p 1);

ret (inl (VNum (n + 1), p′))
⪅ ret (inl({i.1 + 1, unit}, t)) :

(Nat⊗ ListTread,T)

⊕Nat

At this point, we have dropped the type on the first element of the list, since we will not use it for

the remainder of the typechecking process. We then apply PTRE to shift the content type out of

the pointer type, so we can then use the PTROFF and LOAD rules, discharging the load instruction.

Finally, as in the other case, we can repackage our types to match the output type, and conclude

with RET. This shows that when we continue iterating, the values we iterate with are still related

via the loop invariant.

6.7. The Heapster Tool

Heapster implements the type system defined in this chapter, using it to extract specification pro-

grams from implementation programs and type annotations. Heapster has its origins in the Soft-

ware Analysis Workbench (SAW) [Doc+16], a verification tool developed at Galois. SAW uses

symbolic execution, making it best suited to code with bounded loops, and is primarily used to

prove the correctness of implementations of cryptographic algorithms. Heapster was developed

as an add-on to SAW to verify code with unbounded loops.

The tool supports input code in LLVM intermediate representation (IR), thus supporting lan-

guages that compile to LLVM, like C and Rust. The extracted functional specifications are ITrees

augmented with support for logical quantifiers [Sil+23b], which are just data structures in Coq,

and can be used in the proof assistant as with any other data structure.

100

For a user, the first step to use Heapster is to provide their code to the tool, as well as type an-

notations for each function they wish to extract a specification of. These annotations describe the

input and output types of each function. As we have seen in this chapter, these types can be quite

expressive, and the type information from code written in imperative languages like C is typically

not sufficient to act as Heapster types. For most languages, the user writes these type annotations

by hand and provides them to the tool. For input code written in Rust, however, the powerful

type system of Rust means that these types can sometimes be translated directly to Heapster type

annotations. This translation is not exhaustive, and does not support all Rust features. We will

describe support in our type system for lifetimes in Chapter 7, and Heapster’s support for Rust is

similar—“standard” imperative features plus lifetimes and borrowing.

Given the imperative program and appropriate type annotations, the tool then uses heuristics to

apply the typing rules of the tool, and generates a specification program in Coq as part of this

process. While the type system presented in this chapter is not algorithmic—containing rules like

ITER that requires choices of intermediate types, for example—Heapster succeeds in typechecking

many programs. While any program can be typechecked using ERR, this only occurs when the

tool “gives up”, and we consider this a failure. The user can determine whether this occurred by

inspecting the extracted specification, as errors in the tool contain error messages, unlike in the

theory. In a case like this, the program may require typechecking hints in the form of intermediate

type annotations in the middle of a function. For example, programs using loops require such

annotations to act as loop invariants.

Once the user has the extracted specification, they are free to verify anything they wish about these

programs. One useful thing to verify is that the specification cannot step to any error programs,

which tells us that the imperative program is also safe by Theorem 6.2. Another common use

case is to verify that the extracted specification refines a higher-level, handwritten specification.

For these cases, Heapster provides automation in Coq for these refinement proofs [Sil+23b]. In

other cases, manual proof is necessary. For example, ERR could have been used, but the error

computation only exists in some unreachable portion of the specification program. The provided

101

automation may not be able to prove this, and the user is then forced to write a manual proof in

Coq if they want a formal guarantee of this property.

Empirically, Heapster works well on nontrivial functions. He et al. [He+21] presents a suite of

C functions for a memory buffer data structure, implemented as a linked list. 14 of the 18 func-

tions are typechecked successfully by Heapster, without using ERR, with each function that uses

a loop requiring an additional type annotation. Additionally, 11 of the extracted functions were

also verified to be both error-free and refine a higher-level specification, with the help of the Coq

automation provided by the tool [Sil+23b].

In addition to these empirical results and the basic safety result in Theorem 6.2, He et al. [He+21]

further proves a theorem that relates the behavior of the implementation and specification pro-

grams. The basis of the semantic typing judgment is our definition of stuttering bisimulation up

to errors on the right. In general, stuttering bisimulation preserves temporal properties in com-

putation tree logic (CTL) that do not use the next-time operator [BCG88]. This ensures that the

extracted specifications satisfy the same safety, liveness, and fairness properties as the imperative

programs.

A variant of this result is proved by He et al. for our notion of bisimulation. Consider the following

fragment of CTL where St(P) denotes a state predicate (the atomic formulas in this logic) for a

predicate P ⊆ S over values in state type S:

ϕ ::= St(P) ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2 ϕ1 ⇒ ϕ2 EF ϕ EG ϕ AF ϕ AG ϕ.

The semantic entailment relation t, s |= ϕ on programs t of type itree S R, s of type S, and formula

ϕ over S from our fragment of CTL can then be defined in the standard way.

Since implementation and specification programs have different state types, we also need a def-

inition to relate formulas over different state types. To do this, these formulas are related with

respect to some permission π which encodes the “equivalent” states in the two state types in its

precondition.

102

Definition 6.4 (π-similarity [He+21, Definition 4.5]). Let π be a permission over Si × Ss, Pi ⊆ Si,

and Ps ⊆ Ss. Predicates Pi and Ps are π-similar if for all si ∈ Si and ss ∈ Ss such that Pπ(si, ss), we

have Pi(si) ⇐⇒ Ps(ss). CTL formulas ϕ1 and ϕ2 are π-similar if ϕ2 can be obtained from ϕ1 by

replacing every subformula St(Pi) with some St(Ps) for Pi π-similar to Ps.

This permission π can be thought of as the permission held by an observer trying to prove that

programs satisfy some formulas in this fragment of CTL. The precondition of π represents the

observer’s view of how implementation and specification states correspond to each other, and

which states are indistinguishable.

With the definition of π-similarity in hand, we can then prove the result that bisimulation pre-

serves temporal properties.

Theorem 6.13 ([He+21, Theorem 4.6]). If (ti, si) ⪅π1,F (ts, ss) and (ss, ts) ̸→∗ error, then for π2-

similar formulas ϕ1 and ϕ2, and Pπ1∗π2(si, ss), we have ti, si |= ϕ1 ⇐⇒ ts, ss |= ϕ2.

Note that Pπ1∗π2(si, ss) implies π1 ⊥ π2. Since separateness ensures that the rely of π2 is not in-

validated by π1, the precondition of π2 remains invariant throughout execution. This is necessary

since the precondition of π2 captures the equivalence of state predicates used in the definition of

π-similarity.

103

CHAPTER 7

Lifetimes

One major feature of Heapster that we did not model in Chapter 6 is lifetimes. A lifetime is used to

split types temporally and describes when each portion of the split type is active. This has two uses

in Heapster. First, to handle imperative code written in Rust, because Rust types can be translated

to Heapster types and Rust types have a notion of lifetimes. Second, to increase the expressivity

of Heapster, even when run on imperative code in languages other than Rust. This is because

lifetimes allow us to typecheck safe code patterns that would not be well-typed without them.

A central concept in Rust is that each value has only one owner. This is similar to Heapster,

where a pointer-write type has exclusive ownership of memory values. Like Heapster, Rust types

also guarantee memory safety by preventing bugs caused by pointer aliasing. Because of this

property, code written in the safe subset of Rust should also be well-typed in Heapster with their

Rust types, though of course, the Rust types must be translated to Heapster types. This saves

users of Heapster from one of the main steps of using the tool: writing type annotations.

To allow for a more natural programming style, where variables can be reused safely, Rust uses a

borrowing mechanism where the ownership of a value can be temporarily borrowed. The duration

of the borrow is also known as a lifetime, and the compiler checks that lifetimes do not overlap

inappropriately so that there is still only a single owner at a time. This feature, known as the

borrow checker, is both one of the trickiest and most important concepts of Rust, and has been the

target of many verification efforts [Jun+17; Jun+19; Pea21; PPS22]. While Rust lifetimes are usually

implicit in the code and inferred by the compiler, they can also be written in types manually by

the programmer. Thus, to convert Rust types—which may include Rust lifetimes—to Heapster

types, there must also be a way to represent lifetimes in the Heapster type system. Due to their

similarity, we will refer to both features in Rust and Heapster as simply lifetimes.

As an example of lifetimes in Rust, consider the Rust program shown in Figure 7.1. This program

104

fn main() {
let mut data = 10;

let ref1 = &data; // -+- lifetime a
println!("ref1: {}", ref1); // -+

let ref2 = &mut data; // -+- lifetime b
*ref2 += 1; // |
println!("ref2: {}", ref2); // -+

}

Figure 7.1: A Rust program that uses lifetimes implicitly.

creates an immutable reference ref1 that borrows the value of data. Rust’s compiler can infer its

lifetime, which is shown in comments. The reference is not used after it is used to print, so its

lifetime can end after its final use. The program then creates a mutable reference ref2 that also

borrows data. Again, the lifetime of this reference can be inferred, and is shown in comments.

Rust’s borrow checker checks that these lifetimes do not overlap, since it would be unsafe to

have mutable and immutable references borrowing the same value. This program compiles, but

if ref2 attempted to borrow data after ref1 borrows the value and before ref1 is printed, the two

lifetimes would overlap and the program would fail to compile.

These borrows and lifetimes in Rust can be translated to similar concepts in Heapster. The first

borrow in Rust would correspond to Heapster’s notion of splitting a type using a lifetime. The

Heapster lifetime, like the lifetime a in the Rust program, would start when ref1 is created, and

end after it is used for the last time in the next line. The pointer type for the variable data would

be split into two pieces using this lifetime, the pieces before and after the lifetime ends. The first

piece can be weakened into a read-pointer type, and the second piece can remain a write-pointer

type. Since the second borrow is the final use of data in the program, it is unnecessary to split the

type again in Heapster. Checking whether references are used safely is also different in Heapster.

Rather than creating regions and checking whether they overlap, splitting types using Heapster

lifetimes cannot result in unsafe code, so no borrow checker is necessary.

Even when Rust is not involved, lifetimes are useful in Heapster. A problem with the type system

105

in Chapter 6 originates from the fact that permissions can change only monotonically via the⇝

relation during typechecking. This means that once a permission is weakened—for example by

weakening a write pointer type to a read using the PTRWEAK rule—there is no way back. This

ability to revert to a previous type is crucial for typechecking some memory-safe programs. A

program like Figure 7.1 in a language like C is safe—even when multiple immutable references

like ref1 are used to read in the same region—since pointer aliasing is only unsafe if one of the

pointers has write access, which is why we have the READDUP rule. It is safe to use multiple

pointer aliases to read, then later use one alias to write, as long as none of the other aliases are

used after the write. However, if we want to typecheck such a program in Heapster, we would

have to weaken the original pointer-write type to a pointer-read type, and then later go back to

a write type. There is no way to do this in the type system we have presented so far. Fractional

permissions [Boy03] are the usual solution in separation logic for this issue. While that is an option

for Heapster as well, lifetimes gives us another solution that is often more intuitive. Lifetimes will

allow us to split a permission into the portion before the lifetime ends, and a portion after. The

portion before the lifetime ends can be weakened, then reverted to the original permission once

the lifetime has ended.

In this chapter, we will define the semantic definition of lifetime types and how they interact with

existing types. We first introduce the basic operations and the state changes required to represent

lifetimes, as well as the permission definitions. The relational nature of rely-guarantee permissions

is crucial for these permissions, as they will be used to control specific changes to lifetimes. The

definition of the permission types using these permissions is surprisingly intricate. As we will see

in Section 7.3, the part of the permission before the lifetime ends cannot be weakened arbitrarily.

For example, if we have a pointer type and the pointer is deallocated before a lifetime ℓ ends,

then the pointer type should not be recovered once ℓ ends. To solve this, our definitions will

require a specific permission to be returned before the lifetime is allowed to end, to ensure that

split permissions are not rendered invalid after the lifetime ends.

The case of pointer types will also require special treatment due to the content type component

106

Time
ℓ← start end ℓ

ℓ is not started
(nor is it in scope yet) ℓ is current ℓ is finished

Figure 7.2: The life cycle of a lifetime ℓ.

of pointer types. Though split permissions are not permitted to change arbitrarily, if the value

pointed to by a pointer changes, then the pointer type’s content type should change as well. To

handle this, we develop special rules for the combination of lifetime types and pointer types in

Section 7.4 where content types are excluded from the splitting process.

As we will see in Section 7.6, this chapter will not model every part of the implementation of

lifetimes in Heapster. There are still lifetime features missing from the type system we define,

though the theory presented in this chapter shows that the core functionality of lifetimes can be

modeled by rely-guarantee permissions, and future work can extend the system to model the full

Heapster implementation. As such, the treatment of lifetimes in this chapter focuses on expanding

the expressivity of the type system, and is more exploratory in nature than the theory presented

in Chapter 6.

7.1. Defining Lifetime Operations

We begin by defining our representation of lifetimes, and add them to the state. The life cycle of

a lifetime is shown in Figure 7.2. A lifetime is started by the start instruction, which returns the

name of the lifetime, ℓ. At that point, the status of ℓ is that it is active, or current. After that, the

lifetime can be ended with the end ℓ instruction, which changes ℓ to finished, where it remains—it

should not be able to become current again.

Concretely, in the state, we will model the status of all lifetimes as a list. Similarly to a Mem, we

will define a lifetime list Ltms as a list of statuses, where each status is either current or finished.

Lifetime names like ℓ will be represented by indices into the Ltms list, so ℓ ∈N.

This model does not prevent invalid updates to lifetimes, like a lifetime going from finished to

107

current, or a lifetime being deleted from Ltms, which represents returning to a state where it was

not started. To represent well-behaved changes to the Ltms list that preclude such invalid updates,

we define a relation on two Ltms lists, ⇁, which requires that lifetimes not go “backwards”. The

relation s1 ⇁ s2 holds if s2 is not shorter than s1, and no lifetimes present in s1 go from finished to

current in s2. To enforce this, some of our permissions that use lifetimes will include this relation

in their rely, thus requiring that the guarantee of other permissions obey this relation.

Now that we have changed the state type to include this new Ltms list, previously-defined per-

mission types must also be modified. The “generic” permission types defined in Chapter 6, like

type connectives, are defined over any state type, and so are not affected. The memory permis-

sions defined in Chapter 6 were defined over an implementation state type of Mem, but can be

modified to work over any implementation state type that contains a Mem. The guarantees of

those permissions then say they can only modify the Mem portion of the state, and the relies of

those permissions will not have additional constraints on the non-Mem portions of the state. In

the Coq formalization, the definitions that depend on a specific state type are all implemented us-

ing lenses [Fos+07], so the system can be further extended to larger state types. We will continue

to write our types as if the state is exactly equal to the state type of interest, Ltms, but should be

taken to mean that our permissions can work on any state that just contains a Ltms. When we

begin defining types involving the combination of lifetime types and pointer types, it should be

assumed that the implementation state type contains both a Ltms and a Mem.

With this state capable of representing our lifetimes, we can then define the start and end instruc-

tions for starting and ending lifetimes.

start : itree ELtms N

end : N→ itree ELtms unit

These operations for managing lifetimes are similar to malloc and free for managing memory, de-

fined in Chapter 6. The start instruction appends a new lifetime status of current to the lifetime list,

108

Time
ℓ← start end ℓ

π
π before ℓ ends

π after ℓ ends
π

Figure 7.3: How we want to use a lifetime ℓ to split a permission π.

and returns the index of this new element to act as the lifetime name. Like malloc, this operation

never fails since we have an unbounded number of lifetimes available.

The end instruction takes a lifetime name as an argument, and tries to end this lifetime by setting

its status to finished. If the lifetime is either already finished or not started yet (i.e. it is out of scope

in the lifetime list), then end results in error. Otherwise, the status of ℓ is successfully updated to

finished in the Ltms.

Lifetimes do not exist in most imperative languages, and even in Rust, which does have lifetimes,

they are only used by the borrow checker and do not exist in the state. Thus these start and end

instructions do not exist in the original implementation programs and must be inserted. As such,

our lifetime representations can be thought of as a form of ghost state and the instructions as a

form of ghost commands to manipulate the ghost state [Kri+21].

7.2. Lifetime Permissions

The way we make use of these lifetimes that we have just defined is by using them to modify

existing permission types. A lifetime specifies a duration in time, and we will define lifetime

permissions to split a permission using this duration into two portions: the portion before the

lifetime ends and the portion after the lifetime ends. This can be visualized in Figure 7.3. Ideally,

we should be able to arbitrarily change the portion of π before ℓ ends and still get back the original

π after ℓ ends. As we will soon see, the reality of the types and rules we will define and prove will

not quite match this ideal.

To start with, at the permission level we will first define permissions to manage the lifetimes

themselves. Analogously to the Πalloc permission set defined using a πalloc(b) permission for

109

memory, we will define a Πlifetime permission set using a πlifetime(n) permission in the same way,

but for the lifetime list rather than the list of blocks in Mem.

πlifetime(n)
def
= ({ (s1, s2) | the number of statuses in s1 and s2 are the same, and

statuses ≥ n do not change between s1 and s2 },

{ (s1, s2) | statuses < n do not change between s1 and s2, and

s1 ⇁ s2 },

{ s | there are n statuses in s })

The only difference between this definition and that of πalloc(b) is that the guarantee of this per-

mission also requires that the Ltms lists do not go backwards. The permission set version of this is

defined identically as Πalloc:

Πlifetime
def
=

⊔
n∈N

[πlifetime(n)]

One important property we need for the permissions that we split is that they not affect lifetimes.

To do this, we use separateness:

Definition 7.1. A non-lifetime permission is a permission π where π ⊥ πlifetime(n) for all n.

The use of separateness ensures that non-lifetime permissions can tolerate updates to the lifetime

portion of the state using the rely, and do not change anything in the lifetime portion themselves

using their guarantee. This is necessary because the permission being split relies on lifetimes to

determine how they behave. If the permission itself can change lifetimes, they could violate some

of the implicit invariants of the lifetime permissions that we will define.

In addition to being non-lifetime, we also need the permissions that we split to be oblivious to life-

times. This means that these permissions tolerate updates to the lifetime in their rely, guarantee,

and precondition. That is, if a state is in the precondition of the permission, then it should con-

tinue to be in the precondition even if the lifetimes in the state change, and similarly for the rely

and guarantee—even if the changes to the lifetimes are different in the two states related by the

110

rely or guarantee. This property seeks to rule out permissions that inspect or change lifetimes,

and means that we cannot split the permissions that involve lifetime changes that we define in

this chapter. For example, the permission that allows a lifetime ℓ to be ended cannot itself be split

using another lifetime, since it would not be oblivious to changes to the lifetime ℓ. Both the non-

lifetime and obliviousness properties are satisfied by all the permissions defined in Chapter 6, and

so we will omit mentions of these properties from now on.

Now we can define our first permission that works with a specific lifetime. We will call this an

owned permission, as it represents exclusive ownership of a lifetime ℓ. This permission owned(ℓ, π)

also takes an argument π, which represents the permission that will be “given back” once the

lifetime ℓ ends.

owned(ℓ, π)
def
= ({ (s1, s2) | ℓ has the same status in s1 and s2, and

if ℓ is finished in s1, then (s1, s2) ∈ Rπ },

{ (s1, s2) | either s1 = s2 or

for every lifetime ℓ′ ̸= ℓ, the status of ℓ′ in s1 and s2 are equal,

the status of ℓ in s2 is finished, and

(s1[ℓ 7→ finished], s2[ℓ 7→ finished]) ∈ Gπ },

{ s | ℓ is current in s })

The rely of this permission requires that nobody else change the status of ℓ, reflecting that it rep-

resents exclusive ownership of the lifetime. To represent π once ℓ ends, it also requires that the

rely of π holds at that point. The guarantee says that if a change is made, then the change must

have ended the lifetime ℓ. Additionally, we permit any changes that the guarantee of π permits, as

long as the status of ℓ is updated in those states. No other changes to lifetimes are allowed, which

means that s1 ⇁ s2 must hold. Finally, the precondition for this permission says that ℓ is current in

the state.

This permission combines several ideas. First, it is the permission representing exclusive own-

111

ership of the lifetime ℓ, allowing the holder of the permission to end the lifetime ℓ. Second, this

permission also tells us that ℓ is current. Because of this, once ℓ is ended we will need a different

permission to represent π. Lastly, it represents the portion of the permission π that holds after ℓ

ends, which we saw in Figure 7.3. It does this by using the rely and guarantee of π in its own

rely and guarantee. Notably, it does not use the precondition of π. If it did attempt to do this in a

similar way as the rely, by requiring that the precondition of π hold if ℓ is finished, then that would

be vacuously true since the precondition also requires that ℓ be current. The precondition of π will

be an issue we will address at the end of this section.

Next, we introduce the other half of the permission split seen in Figure 7.3. The [ℓ]π permission,

which we will call a when permission, represents the portion of the permission π that holds when

ℓ is current.

[ℓ]π
def
= ({ (s1, s2) | s1 ⇁ s2 and

if ℓ is not finished in s2, then (s1, s2) ∈ Rπ }

{ (s1, s2) | either s1 = s2 or

the lifetimes of s1 and s2 are equal,

ℓ is current in s1, and

(s1, s2) ∈ Gπ },

{ s | if ℓ is not finished in s, then s ∈ Pπ }

The rely of this permission requires that lifetime updates are well-behaved, and that the rely of π

holds as long as ℓ has not ended yet. We only need to check that it has not ended in s2, since the

⇁ requirement means that if it is not finished in s2, then it cannot be finished in s1. The guarantee

says that if any change happens, it must not involve any lifetime changes, and ℓ must be current.

Given those conditions, then the guarantee permits any change permitted by the guarantee of π.

Finally, we also use the precondition of π as that of [ℓ]π whenever ℓ is not yet finished.

When the lifetime ℓ is current, we want [ℓ]π to behave like π, which it does. Additionally, since

112

the rely and precondition check whether ℓ is not finished, both the rely and precondition of π will

hold when ℓ is not started yet. This requirement, added for making some of the proofs simpler,

does not affect how this permission functions, as these when permissions cannot exist before the

lifetime ℓ is started.

As mentioned earlier, we will need another lifetime permission to represent the split permission

after ℓ ends. If we are to allow for the portion of π before ℓ ends to be changed and weakened,

then it makes sense that we would not be able to reobtain the original permission π once ℓ ends,

since some of the original permission has been lost in this weakening. We will call this permission

used for representing π after ℓ has ended a finished permission, written {ℓ}π:

{ℓ}π def
= ({ (s1, s2) | s1 ⇁ s2 and

if ℓ is finished in s1, then (s1, s2) ∈ Rπ }

{ (s1, s2) | either s1 = s2 or

the lifetimes of s1 and s2 are equal,

ℓ is finished in s1, and

(s1, s2) ∈ Gπ },

{ s | ℓ is finished in s and s ∈ Pπ }

This permission is very similar to the when permission. The rely requires that lifetime updates obey

⇁, and that the rely of π holds as long as ℓ is finished in the earlier state. Like the when permission,

we only enforce the rely of π when ℓ has the status of interest (finished in this case) in both the

starting and ending states. The guarantee, like that of the when permission, only permits changes

permitted by π, without any lifetime changes, and only when ℓ is finished. The precondition,

however, differs from that of when. Rather than an implication, the precondition of the finished

permission states that ℓ is finished and that the precondition is the same as that of π. This is because

the finished permission is the final step in the life cycle of the permission, and ℓ cannot change to

another status. The implication was necessary for the when permission because the lifetime could

113

Time
ℓ← start end ℓ

π
[ℓ]π

owned(ℓ, π)
{ℓ}π

Figure 7.4: How we will use a lifetime ℓ to split a permission π.

become finished, and any when permissions still remaining must then stop behaving like π.

By carefully choosing the definitions of these permissions, we can prove the following results,

showing that the properties we want for splitting permissions hold. First, when permissions and

owned permissions for the same lifetime ℓ can coexist, even if π1 and π2 are not separate, because

their relies and guarantees split the underlying relies and guarantees by the lifetime ℓ.

Lemma 7.1.

[ℓ]π1 ⊥ owned(ℓ, π2)

We can then prove the following theorem, which tells us that we can split permissions using owned

and when permissions.

Theorem 7.2 (Permission splitting).

π ∗ owned(ℓ, π′) ⊑ [ℓ]π ∗ owned(ℓ, π ∗ π′)

Now we have a more concrete diagram of how permissions are split, shown in Figure 7.4.

While most of the pieces are in place, we run into a problem with preconditions when we try to

prove the typing rule for ending a lifetime. As mentioned earlier, the owned(ℓ, π) permission does

not enforce the precondition of π, so how can we reobtain π once ℓ ends? Even if owned did use

the precondition of π when ℓ is finished, we would still need some way of requiring the state to be

in that precondition when the lifetime ends. During the period where ℓ is current, we should have

been able to change [ℓ]π arbitrarily, so the precondition of π may not hold at all at that point. It

114

turns out that we cannot permit unrestricted changes to the permission while ℓ is current in order

to regain π after the lifetime ends. The next section will define permission sets for lifetimes, and

in that definition, introduce a solution for this problem.

7.3. Recovering Split Permissions

Reobtaining the original permission after ending a lifetime cannot be done unconditionally. That

is, if we defined permission set versions of the lifetime permissions as follows:

owned(ℓ, Π)
def
=

⊔
π∈Π

[owned(ℓ, π)]

[ℓ]Π def
=

⊔
π∈Π

[[ℓ]π]

{ℓ}Π def
=

⊔
π∈Π

[{ℓ}π],

we cannot prove a rule like

owned(ℓ, Π) ⊢ end ℓ ⪅ ret unit : True⊘ {ℓ}Π,

since we cannot ensure that the precondition of the returned permission holds.

Instead, what we will do—following from Heapster—is to add an extra argument to the definition

of the owned permission set, representing the permissions that must be returned to recover the

original split permissions. We will write this as owned(ℓ, Π1 ⊸ Π2), where Π1 must be given

back in order to recover Π2 when ending ℓ. We want the following rule for ending a lifetime to be

provable:

Π1 ∗ owned(ℓ, Π1 ⊸ Π2) ⊢ end ℓ ⪅ ret unit : True⊘ {ℓ}Π2

This new argument to the owned permission set is used purely to ensure the precondition holds,

so the values of Π1 could vary depending on the specific Π2. Specific rules for different Π1 and Π2

values for different uses could be written, depending on what precondition is needed. It should

always be sound to have Π1 = [ℓ]Π2, but a different permission could work in special cases, like

115

when we are dealing with pointer permissions. In that case, the weaker pointer-read permission

should be sufficient to recover a pointer-write permission, since these two permissions have the

same precondition. This also means that our example from earlier of temporarily weakening a

pointer-write type into a read type should still be possible with this approach, since the read type

will be sufficient to recover the write type.

Another feature we would like to support with this owned permission set is the ability to return

part of the permissions that are needed to recover the split permission. These partial returns are

used in Heapster to restrict access to part of the split permission. For example, a function for an

object might split the type for the entire object, but only give access to one specific field of the

object. The equivalent in Rust would be to borrow a structure and discard access to part of the

structure, for example with a getter function for one field of the structure. Partially returning

the portion of the type for every field except the desired one would express this pattern. More

concretely, we want the following rule to be provable:

Π ∗ owned(ℓ, Π ∗Π1 ⊸ Π2) ⊑ owned(ℓ, Π1 ⊸ Π2)

To support both of these typing rules, we define the permission set version of owned as follows:

owned(ℓ, Π1 ⊸ Π2)
def
= { x | x ⊑ π ∗ owned(ℓ, π2), for some π2 ∈ Π2 such that

for any π1 ∈ Π1 where π1 ⊥ π ∗ owned(ℓ, π2),

there exists a π′2 ∈ Π2 where π2 ⇝ π′2 and

for any state s,

if s[ℓ 7→ current] ∈ Pπ1 and s[ℓ 7→ current] ∈ Pπ,

then s[ℓ 7→ finished] ∈ Pπ′2
. }

An element of this permission set is one that can be weakened to owned(ℓ, π2) combined with

a permission π, the partially returned permission to this owned permission set. The rest of this

116

definition says that if we have a π1 ∈ Π1, then that should be able to give us an element of Π2.

This element π′2 may not be the exact permission returned to us by the owned permission, but it will

be in Π2. Together, the preconditions of π and π1 should be sufficient to imply the precondition

of the permission π′2. The use of⇝ here for relating π2 and π′2 is crucial, as the precondition of π2

may not hold. The final part of the definition tells us that the precondition of this π′2 must hold,

as long the preconditions of π1 and π hold, at the corresponding statuses of ℓ. We should hold π1

and π before the lifetime has ended, so they are checked when ℓ is current. We want to be holding

π′2 after the lifetime has ended, so the conclusion tells us that the precondition holds on the state

where ℓ is finished.

With this definition, we can now prove the desired typing rules, though we still have not defined

these concepts as permission types, so some types will be represented as functions. When we do

define the appropriate permission types in the next section, we will also prove new typing rules

that use these ones in their proofs.

First, we can prove the rule for starting a lifetime.

Theorem 7.3.

Πlifetime ⊢ start ⪅ ret unit : λ(ℓ, _). owned(ℓ, Π⊤⊸ Π⊤) ∗Πlifetime

The new owned permission set does not give any permission set back, and does not require any

permission set to be returned to it, represented by the vacuous Π⊤ permission sets in both posi-

tions.

We can then prove the rule for ending a lifetime, where if we have the exact permission set needed

to return to the owned construct, then it can be consumed and we can reobtain the Π2 set.

Theorem 7.4.

Π1 ∗ owned(ℓ, Π1 ⊸ Π2) ⊢ end ℓ ⪅ ret unit : True⊘ {ℓ}Π2

117

Next, we can prove a splitting rule specialized to pointer types, using the idea that a read permis-

sion is sufficient to recover a write permission after the lifetime ends.

Theorem 7.5.

xi : ptr((rw, o) 7→ eq(x)) ▷ unit ∗

owned(ℓ, Π1 ⊸ Π2)
⊑

xi : [ℓ]ptr((rw, o) 7→ eq(x)) ▷ unit ∗

owned(ℓ,

xi : [ℓ]ptr((read, o) 7→ eq(x)) ▷ unit ∗Π1 ⊸

xi : ptr((rw, o) 7→ eq(x)) ▷ unit ∗Π2)

This rule says if we have an owned permission set and a pointer type with an equality content type,

then we can apply this rule to split the pointer type, ending up with the portion inside a when and

the other portion inside the owned set. To regain the full pointer type after the lifetime ends, we

must return the portion inside the when, but it does not have to be the original pointer type—it

can be the weaker pointer-read type.

Note that here, when we apply a when to a pointer type, we only apply it to the pointer permission

set portion of the type, and not the content type. Heapster does not recursively split the content

type of pointer types. If we did want to split the content type, we can always move the content

type out using PTRE and split it manually. Similarly, we will write {ℓ}ptr((rw, o) 7→ T) to apply a

finished to a pointer type in the same way, where we apply the finished permission set definition to

the pointer permission set portion of the type, and not to the permission type T.

Finally, we can prove the rule for partially returning a permission to the owned permission set,

specialized to pointer types:

Theorem 7.6.

xi : [ℓ]ptr((read, o) 7→ eq(x)) ▷ unit ∗

owned(ℓ, (xi : [ℓ]ptr((read, o) 7→ eq(x)) ▷ unit) ∗Π1 ⊸ Π2)
⊑ owned(ℓ, Π1 ⊸ Π2)

118

ℓ← start end ℓ

ptr(. . . 7→ T)
[ℓ]ptr(. . . 7→ T)

owned(ℓ, [ℓ]ptr(. . . 7→ True)⊸
ptr(. . . 7→ True))

{ℓ}ptr(. . . 7→ T)

Time

Figure 7.5: How we will use a lifetime ℓ to split a pointer type.

These rules allow us to temporarily weaken a pointer-write type to a pointer-read and regain

the original write type afterwards, but do not allow much else. The definitions require that we

return the exact permission type that we started with, including the equality content type, which

disallows any change to what the pointer points to, effectively banning uses of STORE while the

type is split. To fix this issue, we will once again define a solution at the next level of definitions,

this time at the permission type level.

7.4. Lifetime Types and Typing Rules

In this section we will introduce a permission type called ownedptrs and its typing rules for the

special case of splitting pointer types. While the splitting rule we presented in the previous sec-

tion is too restrictive, we can build on those permission set definitions to allow for changes to the

content types during the duration of a lifetime. Instead of using Theorem 7.6 to handle partially

returned permission sets, we will instead define ownedptrs as bundling both the partially returned

permission sets and the owned permission set together. Using this approach, once all the permis-

sions necessary to end the lifetime are obtained, we use all of them at once along with the owned

permission set to end the lifetime with Theorem 7.4.

This approach effectively never uses the π portion of the definition of owned(ℓ, Π1 ⊸ Π2) that

enables Theorem 7.6. Internally, that permission will always be π⊤, as we never partially return

anything to the permission set. This does not mean that the full definition of the owned permission

set or Theorem 7.6 are useless, but rather that they are not well-suited to handling our pointer

types, due to the content type. Other types and typing rules that involve state without combining

two permissions—as pointer types do with content types—could make use of them.

119

The approach we will take, shown in Figure 7.5, is to keep content types with the pointer type

wrapped in a when, and not with the owned permission set at all. Crucially, the pointer type

attached to the owned portion will have its content type weakened to True. When a pointer type

is split, its content type T will be moved to the when pointer type that is usable while the lifetime

is current. For the duration of the lifetime, this content type T can change arbitrarily, since we do

not need it to end the lifetime. When we do end the lifetime, T must be temporarily moved so the

when pointer types have a True content type to match the one in the owned permission set. After

the lifetime is ended, we reobtain the pointer type with a True content type, and can then move T

back in to replace True as the content type.

The ownedptrs type, written as ownedptrs(l1/l2), will take two arguments. The first, l1, is a list of

pointer types that have already been returned, represented as a list of the pointer Vals, offsets,

and content types. The second, l2, is a list of pointer types that are still outstanding, represented

as a list of the pointer Vals and offsets. Since these pointer types have True content types, we

do not need to include those in the list. For the already-returned pointer types, the j-th one has

content type Tj : PType(Val, Aj) of each type, and the ownedptrs type relates the pointer in l1 to the

corresponding specification value of type Aj on the specification side.

ownedptrs((p1, o1, T1), . . . , (pi, oi, Ti)/(pi+1, oi+1), . . . , (pn, on)) : PType(N, A1 × · · · × Ai)

ℓ : ownedptrs((p1, o1, T1), . . . , (pi, oi, Ti)/(pi+1, oi+1), . . . , (pn, on)) ▷ (x1, . . . , xi)
def
=

(p1, . . . , pi) : ([ℓ]ptr((read, o1) 7→ T1)⊗ · · · ⊗ [ℓ]ptr((read, oi) 7→ Ti)) ▷ (x1, . . . , xi) ∗

lowned(ℓ,

(p1 : [ℓ]ptr((read, o1) 7→ True) ▷ unit) ∗ . . . ∗ (pn : [ℓ]ptr((read, on) 7→ True) ▷ unit)⊸

(p1 : ptr((rw, o1) 7→ True) ▷ unit) ∗ . . . ∗ (pn : ptr((rw, on) 7→ True) ▷ unit))

We can then prove the following rule for returning one of the outstanding pointer types, where

the pointer information is moved from the unreturned list to the returned list, and its content type

is also moved to the returned list.

120

Theorem 7.7 (RETURNL).

p : [ℓ]ptr((read, o) 7→ T) ▷ x ∗

ℓ : ownedptrs(l1/l2 ++ ⟨(p, o)⟩) ▷ xs
⊑ ℓ : ownedptrs(l1 ++ ⟨(p, o, T)⟩/l2) ▷ (xs, x)

While this rule has the pointer information for the pointer type as the last element of the unre-

turned list, this list can be reordered without issue, since they are just representing permission

sets combined with ∗ internally. The rule then returns this pointer type to the ownedptrs type by

consuming it, moving the pointer information to the returned list and adding its content type to

the returned list as well. The specification value x it was associated with is also added to the tuple

of specification values that the ownedptrs type is associated with.

Next, we prove the rule for splitting a pointer type:

Theorem 7.8 (SPLITL).

p : ptr((write, o) 7→ T) ▷ x ∗

ℓ : ownedptrs(l1/l2) ▷ xs
⊑

p : [ℓ]ptr((write, o) 7→ T) ▷ x ∗

ℓ : ownedptrs(l1/l2 ++ ⟨(p, o)⟩) ▷ xs

The proof of this rule relies on Theorem 7.2 to perform the split at the permission level. The

pointer type is then wrapped inside a when for the rest of the lifetime, and this also adds the

pointer information for the pointer type to the list of types yet to be returned to the ownedptrs

type.

Next we can prove the rule for starting a new lifetime, which gives us an ownedptrs type with

nothing in its lists:

Theorem 7.9 (STARTL).

Πlifetime ⊢ start ⪅ ret unit : ownedptrs(⟨⟩/⟨⟩)⊘Πlifetime

121

Note that the product type on the specification side was defined recursively, and has a base case

where if we are taking the product of zero elements, then its type is Unit. This is reflected here in

the specification program, but this extra Unit type (and corresponding unit value) will be omitted

in other definitions for simplicity.

For the final rule for ending a lifetime and regaining the stored pointer types, we first need a

permission type to apply a finished modifier to all the pointer types combined together using ⊗:

finishedptrs(⟨(p1, o1, T1), . . . , (pn, on, Tn)⟩, (x1, . . . , xn)) : PType(N,Unit)

ℓ : finishedptrs(⟨(p1, o1, T1), . . . , (pn, on, Tn)⟩, (x1, . . . , xn)) ▷ unit
def
=

(p1, . . . , pn) :

{ℓ}ptr((write, o1) 7→ T1)⊗ · · · ⊗ {ℓ}ptr((write, on) 7→ Tn) ▷

(x1, . . . , xn)

Now we can prove the rule for ending a lifetime:

Theorem 7.10 (ENDL).

ℓ : ownedptrs(⟨(p1, o1, T1), . . . , (pn, on, Tn)⟩/⟨⟩) ▷ (x1, . . . , xn) ⊢ end ℓ ⪅ ret unit

: True⊘ ℓ : finishedptrs(⟨(p1, o1, T1), . . . , (pn, on, Tn)⟩, (x1, . . . , xn)) ▷ unit

This rule says that if all the outstanding pointer types have been returned using RETURNL, then

we can end the lifetime and recover the original pointer types, wrapped inside a finishedptrs.

7.5. A Lifetime Example

Now that we have types and typing rules for handling pointer types with lifetimes, we can go

through an example of using these rules to temporarily duplicate a pointer type, something we

could not do with only the types in Chapter 6. In this example, we will assume there is a program

t which requires two values p and p′ with pointer-read types. Specifically, we assume it is well-

122

typed with the following input and output types:

ℓ : ownedptrs(l1/l2) ▷ xs ∗

p : [ℓ]ptr((read, 0) 7→ eq(v)) ▷ unit ∗

p′ : [ℓ]ptr((read, 0) 7→ eq(v)) ▷ unit ⊢

t p p′ ⇝

ret unit :

True⊘ ℓ : ownedptrs(l1/l2) ▷ xs ∗

p : [ℓ]ptr((read, 0) 7→ eq(v)) ▷ unit ∗

p′ : [ℓ]ptr((read, 0) 7→ eq(v)) ▷ unit

This program t requires pointer-read types that have already been split for both of its input values.

With our new types and typing rules, we can apply t with the same pointer value for both of its

arguments, and still be able to use STORE with that pointer later on.

Throughout this typing derivation, we will use pointer rules defined in Chapter 6, but with differ-

ent types. We hold the pointer types wrapped inside a when, and also hold a ownedptrs type with

the same lifetime, telling us that the lifetime for the pointer type is current, so the pointer type

inside the when can be used just as a normal pointer type. These alternate versions of the typing

rules are proved in the Coq formalization, and we will use them implicitly here.

The overall implementation program we wish to typecheck is

ℓ← start; t p p; end ℓ; ret ℓ.

Note that we return the lifetime ℓ manually at the end of this program. This is because we cannot

use ℓ directly in the output type, since it was not in scope originally, but was created by the start

instruction. By returning ℓ, we can apply the output type to this lifetime.

To typecheck this program, we will prove the following typing judgment, with the lifetime per-

123

mission set Πlifetime included to allow for lifetime creation:

Πlifetime ∗ p : ptr((write, 0) 7→ Nat) ▷ x

⊢ ℓ← start; t p p; end ℓ; ret ℓ ⪅ ret unit : finishedptrs(⟨(p, 0,Nat)⟩, ⟨x⟩)⊘Πlifetime

Due to the size of the typing derivation, we will describe the major steps and intermediate states

of the typing derivation, rather than presenting the all the details or the entire proof tree. We use

BIND to typecheck each of the instructions in the implementation separately. The most interesting

part is manipulating the types to typecheck the t portion of the program, where we will need to

split, then weaken and duplicate the pointer type. Afterwards, we return the pointer type to the

ownedptrs type and end the lifetime.

The first instruction we handle is the start instruction. We use BIND to handle this operation

separately and FRAME to hide the unnecessary types. This gives us an ownedptrs type for the new

lifetime ℓ we get from the instruction.

ℓ : ownedptrs(⟨⟩/⟨⟩)⊘ (Πlifetime ∗ p : ptr((write, 0) 7→ Nat) ▷ x) ▷ unit

⊢ t p p; end ℓ; ret ℓ ⪅ ret unit : finishedptrs(⟨(p, 0,Nat)⟩, ⟨x⟩)⊘Πlifetime

Next we need to manipulate the input type in order to get the types needed to typecheck t p p.

First, we use CNSQ along with PERMSE to discharge the⊘, and FRAME to hide the now-unneeded

Πlifetime. The input type is now

ℓ : ownedptrs(⟨⟩/⟨⟩) ▷ unit ∗ p : ptr((write, 0) 7→ Nat) ▷ x.

Next we use SPLITL to split the pointer-write type, then weaken it using PTRWEAK (the version

we proved for pointer types inside a when) to a pointer-read type.

ℓ : ownedptrs(⟨⟩/⟨(p, 0)⟩) ▷ unit ∗ p : [ℓ]ptr((read, 0) 7→ Nat) ▷ x

124

Then, we use PTRE to move out the content type of Nat, and then we can duplicate the pointer-

read type using CNSQ and READDUP.

ℓ : ownedptrs(⟨⟩/⟨(p, 0)⟩) ▷ unit ∗

p : [ℓ]ptr((read, 0) 7→ eq(v)) ▷ unit ∗ p : [ℓ]ptr((read, 0) 7→ eq(v)) ▷ unit ∗ v : Nat ▷ x

Now we have the exact types needed to typecheck t, which we can do after applying BIND and

FRAME. The types remain the same after handling t, though we first remove the extra True type

and discharge the ⊘ connectives. Next, we need to return the pointer-read type to the ownedptrs

type, which will let us end the lifetime. We first need to move the Nat type back into the pointer

type, which we do using CNSQ and PTRI. We no longer have a use for the second pointer type on

p, so we drop it. Even if we kept it, it would not be usable after the lifetime is ended, since the

typing rules for pointer types inside when types require an ownedptrs type to be present to ensure

that the lifetime is current. Now the input type is back to the same type as in a previous step:

ℓ : ownedptrs(⟨⟩/⟨(p, 0)⟩) ▷ unit ∗ p : [ℓ]ptr((read, 0) 7→ Nat) ▷ x

At this point, we are ready to use RETURNL.

ℓ : ownedptrs(⟨(p, 0,Nat)⟩/⟨⟩) ▷ x

Finally, now that the ownedptrs type says every outstanding pointer type has been returned to it,

we can handle the end ℓ operation using BIND and STOPL. The final piece of the program we need

to typecheck after this is the return:

ℓ : finishedptrs(⟨(p, 0,Nat)⟩, x) ▷ unit ⊢ ret ℓ ⪅ ret unit : finishedptrs(⟨(p, 0,Nat)⟩, x)

We can conclude with an application of the RET rule.

For most programs that use multiple aliasing read-pointers, they can be typechecked by using

125

a single pointer-write type and simply moving the type around different aliases using equality

types. However, even if we know that a program is using pointer aliases, it is not always sufficient

to have just one pointer type. For example, applying the ITER rule consumes the type relating the

starting values for iteration. If the body of an iter uses the starting values again and we need

their type again when typechecking the body, then we would need to duplicate this type before

applying ITER. One could also imagine other programs that require pointer types for each alias. If

we had support for concurrency, for example, then a rule like the parallel composition rule from

concurrent separation logic would require each thread to have its own pointer type.

7.6. Differences with Heapster Lifetimes

While we have shown that rely-guarantee permissions can model the core concepts of lifetimes

and splitting permissions using these lifetimes, the type system presented in this chapter does not

fully capture all the features of lifetimes in Heapster.

Some of these differences are minor and could be easily resolved. For example, we only proved

some basic pointer rules when the pointer type is in a when, but did not prove rules for array types,

which would be necessary to support crucial operations like malloc and free. If we needed those

rules, we could prove them as well for use with lifetimes. After using a lifetime type and ending

the lifetime, any types split using the lifetime are then held inside a finished modifier. Similar to the

rules for using pointer types when they are inside a when, we could prove rules for using pointer

types inside a finished. In fact, we have proven the following theorem, which could be used for

this task.

Theorem 7.11. If Π ⊢ ti ⪅ ts : T, then {ℓ}Π ⊢ ti ⪅ ts : λ(ri, rs). {ℓ}(T ri rs)

Another small difference is the representation of lifetimes on the specification side. While lifetime

operations like start and end are not present in specification programs, just as with our system—

the specification values that lifetime values are related to differ. With our definitions, ownedptrs

relates a lifetime on the implementation side to a tuple of specification values. The tuple contains

all the specification values for the types that have been returned to the ownedptrs type. Heapster,

126

on the other hand, represents these as a function from the specification values that have not been

returned yet to the combination of already-returned values and not-yet-returned values. These

representations are equivalent, however, and one could be converted to the other.

The ability to handle nested lifetimes is a bigger difference that is more difficult to resolve with

our current semantics of lifetime types, though this does not seem to be an inherent limitation of

the rely-guarantee permission approach. Heapster supports nested lifetimes, where one lifetime

is completely subsumed by another—the inner lifetime starts after the outer one, and ends before

the outer lifetime. This originates from Rust, where lifetimes are often tied to lexical scope. So

one scope that is nested in another would result in a lifetime that is nested in another. This is

used heavily in Rust, as any lifetime can be implicitly converted into a lifetime nested within it.

In contrast, for the system we presented, we must pick the “right” lifetime upfront when splitting

a type, as there is no way to convert to a different lifetime. To represent this nesting, Heapster’s

owned types have another argument: a list of the lifetimes that are nested in the one that it owns.

This determines how lifetimes can be converted, and a lifetime cannot be ended until all of its

nested lifetimes are already finished.

We made several attempts to model this feature in the theory we presented in this chapter. One

approach to adding this that we tried was to modify the state, by encoding the lifetime hierarchy

in the way we store lifetimes. Rather than the list definition of Ltms, we used a rose tree [Mee88]

and used the structure of the tree to represent the nesting relationship. This approach, however,

required that we know the exact structure of lifetime nesting when we start a lifetime. The “par-

ent” of each lifetime had to be known statically, but Heapster allows the nesting behavior be

determined dynamically, after a lifetime is started.

Another approach we used is to encode these nesting relationship as invariants. Lifetimes have

several properties that would be useful to encode using invariants within rely-guarantee permis-

sions. For instance, when a lifetime ends, the fact that it is finished should be invariant for the

rest of the program. With that invariant formalized in the system, we could imagine a rule where

{ℓ}Π is proved to be equivalent to Π itself. Nested lifetimes could also be encoded as invariants.

127

Once one lifetime is determined to be nested within another, this relationship could be added to

the invariant and remain true for the remainder of the program. We tried to add invariants to the

type system using dependent types to constrain the state type to states where the invariant holds,

and strengthen the invariant throughout typechecking. The benefit of this was that the type sys-

tem would not have to change, as we can reuse all the existing definitions and rules. However, the

type system was designed to operate over a consistent state type, and rules that involved changing

the state type were not provable.

While the theory of Heapster presented in this chapter does not implement nested lifetimes, we

believe that extending rely-guarantee permissions with a fourth component representing the in-

variant can be used to add nested lifetimes to the lifetime types. We will discuss this future work

further in Chapter 8.

A last difference between the treatment of lifetimes in the theory in this chapter and lifetimes in

Heapster is the status of lifetimes in the language. In this chapter, lifetime statuses are stored in

the state and there are start and end instructions in the language to manage lifetimes. In Heapster,

lifetimes are not part of the language at all, but are only part of the type system. So while in our

type system, we have to decide where to insert instructions to start and end lifetimes, in Heapster

one has to infer where to apply the typing rules to start and end lifetimes. These approaches are

similar, but one possible piece of future work would be to connect them formally. This would first

require formalizing the Heapster approach in the type system, then—as with other works using

ghost state—we could prove an erasure theorem, proving the equivalence of the code with and

without the ghost state [FGP14].

128

CHAPTER 8

Future Work and Conclusion

We have already mentioned some possible areas for future work in this dissertation, like connect-

ing our Coq formalization to other work using ITrees and using rely-guarantee permissions as the

semantics for other verification techniques. In this chapter, we consider two more major directions

for future work and conclude.

8.1. Concurrency

Since rely-guarantee is a logic for reasoning about concurrency and separation logic has significant

applications for concurrency, a natural next step is to extend the theory of Heapster to deal with

concurrent code. As Heapster does not yet support concurrent code, this is also an opportunity to

use the insights from extending the theory using rely-guarantee permissions to guide the design

of the tool.

In fact, there is already some work in this area to suggest that rely-guarantee permissions can be

used as the semantics for a type system that supports concurrency. We had previously extended

the type system without specification extraction—presented in Chapter 5—with an operation rep-

resenting parallel composition. To do this, we used an interleaving semantics, as in representa-

tions of concurrency like CCS [Mil80], by adding nondeterministic choice to our programs. Then,

at each step, a concurrent program would be able to nondeterministically choose which thread to

run. We did this by adding an event to represent nondeterministic choice to the ITrees’ event type:

Or : E B.

This event gets a boolean value from the environment, representing the nondeterministic choice.

With this addition to the event type and after adding it to the steps-to relation, we defined the

parallel composition of two programs, t1 ∥ t2, as a corecursive function. This function uses non-

determinism events in the output ITree to choose which of the two input ITrees to run. Then,

129

it corecursively inserts nondeterminism events after each node from the input ITrees to choose

whether to run t1 or t2 next. Effectively, we give the overall program the option to switch threads

at every possible point during execution.

With this definition in hand, we proved a parallel composition rule inspired by the analogous one

in concurrent separation logic:

Π1 ⊢ t1 : Q1 Π2 ⊢ t2 : Q2

Π1 ∗Π2 ⊢ t1 ∥ t2 : λ(r1, r2).Q1 r1 ∗Q2 r2

However, this approach quickly became untenable for the full type system defined in Chapter 6.

Defining parallel composition by considering all interleavings is quite low level and proofs in-

volving it are difficult because of this. When we generalized to the full definition of bisimulation

with both the implementation and the specification program, relating two parallel programs in the

parallel composition rule was too difficult due to the number of possibly-related implementation

and specification programs that bisimulation must consider. Up-to techniques for reducing the

number of related programs in the bisimulation could help with this problem, but we eventually

set aside concurrency for future work.

8.1.1. Designing the Type System

The core question underlying this direction of work is one of design. The work described in this

dissertation has only dealt with formalizing and proving semantics for existing types and typing

rules in Heapster. For supporting concurrent code, one must instead consider both the semantics

and the design of types together.

Since Heapster currently takes input as programs in LLVM IR, one possibility is to provide sup-

port for the low-level concurrency primitives in this language, like with pointer types for memory.

Extracting useful specifications from such code is likely to be difficult, however. Without being

able to represent higher-level concurrency constructs like synchronization primitives and com-

munication between threads, specifications will not be able to express such abstractions either. A

130

better option may be to focus on specific higher level language features, like how Heapster has

special support for Rust lifetimes.

The current direction that Heapster takes is to automate the simple-but-tedious parts of verifying

that imperative programs implement functional specifications. For memory-manipulating pro-

grams, these are the parts of programs that use pointers safely, which Heapster captures in its

type system. We should then find the simple parts of concurrent programs that are easy to trans-

late to functional programs. Safe Rust programs again seem like a good candidate, due to the

similarity between Rust types and Heapster types.

Well-typed Rust programs guarantee not only memory safety, but also thread safety. This, like for

memory safety, is due to its ownership mechanism, which controls aliasing and by doing so, pre-

vents data races. We could then introduce types in Heapster for Rust types used for concurrency,

similar to how lifetimes in Heapster are used to support Rust lifetimes. One difference is that Rust

lifetimes are solely in the type system, so we did not need to extract anything new to specifica-

tions. Concurrent code requires mechanisms for creating new threads and for synchronization,

so specifications will need additional components compared to the pure functional programs in

this dissertation. Those programs were all of type itree EUnit R—that is, none of those programs

included any use of state. However, types to support Rust types for concurrency would require

state. For example, the Arc type represents an atomic reference counted pointer, used to share

ownership between threads. A value of this type would have to be extracted to some similar ob-

ject on the specification side, which would require state to dynamically update the reference count

and ownership information.

Unlike lifetimes, which can be used even for non-Rust code, types for concurrency will be for

specific concurrency features, which can differ drastically between different languages. Thus,

these design decisions are especially important for the future direction of Heapster.

131

8.1.2. Representing Concurrent Programs

To support concurrency, we first need to be able to represent concurrent programs in the theory of

Heapster.

As described above, using ITrees to represent concurrent programs was not successful, though

an option if we want to continue using an ITree-like representation for programs is to use the

choice trees (CTrees) extension of ITrees [Cha+23]. CTrees build in a notion of nondeterminism,

or choice, into the definition of the data structure by replacing the τ node with a node for nonde-

terministic branching. The library also provides equational reasoning for CTrees, much like the

ITree library. As a part of their paper, Chappe et al. developed a case study for cooperative mul-

tithreading using CTrees that could be used to represent concurrent programs. With this system,

context switching can only happen at specific points, which are marked by events. To represent

preemptive multithreading, these events could be added after each node in a thread.

Another benefit of using CTrees is that they subsume ITrees. Chappe et al. prove that ITrees can be

represented using CTrees, and as this operation is defined and proved in Coq, we can formally re-

late the work in this dissertation directly to the new CTrees representation, rather than rebuilding

the proofs for the type system using the new library.

A different approach not involving CTrees is to build concurrency directly into the language. For

example, a program could be represented as a collection of threads, and the small-step semantics

could be updated to handle this. Such a big change would require significant changes to the rest

of the semantics, and to definitions like bisimulation and semantic typing.

8.2. Adding Invariants to Rely-Guarantee Permissions

Aside from concurrency, a second major direction of future work is adding a notion of an invariant

to the definition of a rely-guarantee permission. As mentioned in Section 7.6, one weakness of

our treatment of lifetimes was the lack of support for nested lifetimes, which could be solved

by invariants. In addition to being able to define more features for lifetime types, the idea of

invariants itself is a natural one to express evolution of the state. For example, invariants could

132

be used to record the blocks of memory that have been freed, since they cannot be reused in our

type system. For future additions to the state, like information about threads, there could also be

some natural uses for invariants. While we tried several ways of adding invariants, what seems

the most promising is to make the invariant a part of the definition of rely-guarantee permissions,

so that a rely-guarantee permission has four instead of three components.

An invariant, once established, should remain true for the rest of the program. This can be formal-

ized by changing how permissions are allowed to change during typechecking. Rather than only

allowing permissions to change via⇝, we can add the requirement to also strengthen their invari-

ants as they change. While invariants should remain true for the entire program, they are attached

to individual permissions, which can always be dropped. This should not be an issue, however,

because these invariants can “spread” when we combine permissions. Like how preconditions

are combined using intersection in ∗, the invariants can also be combined using intersection, so

the overall permission always has the conjunction of all the individual invariants.

By adding invariants, many of our existing definitions would have to change. This simplifies

some definitions, since instead of reasoning about all states in the state type, these definitions only

have to reason about states that satisfy the invariant. This was needed in the definition of when

in Section 7.2. We needed to reason about the case where the lifetime is not started yet by adding

this case to the rely and precondition. By adding invariants, we would have an invariant that says

the lifetime is either started or finished, so these extra cases would not be necessary. Invariants

will also complicate other definitions. For example, separateness would no longer be upward-

closed, since weaker permissions would have weaker invariants, and require us to reason about

separateness in a bigger state space. Instead, we would have to strengthen the invariant of the

weakened permission to retain this useful property.

8.3. Conclusion

In this dissertation we have defined rely-guarantee permissions and used them to prove the

soundness of the Heapster type system. We focused on two main concepts in the type system.

First, rely-guarantee permissions were used to represent types for controlling memory. Types in

133

Heapster limit the capabilities of pointer-manipulating programs, resulting in memory safe pro-

grams. We defined a semantic representation of these types using rely-guarantee permissions,

which relied on using rely-guarantee permissions to to model concepts in separation logic—like

separation and separating conjunction—that are used in the type system. As a result of the mem-

ory safety guarantees of the type system, typechecking also extracts equivalent functional pro-

grams from these pointer-manipulating imperative programs. We showed that rely-guarantee

permissions are able to represent the semantics of this relational typing judgment using a bisim-

ulation relation, where rely-guarantee permissions control the behavior of both the imperative

program and the functional program.

Next, we expanded the type system and focused on types for lifetimes, which allow us to tem-

porarily weaken other types. The relational nature of our approach was crucial for representing

lifetime types using rely-guarantee permissions. We defined rely-guarantee permissions for con-

trolling lifetimes which involved fine-grain splitting of other permissions using these lifetime per-

missions. These permissions formed the semantics of new types and typing rules. We showed that

these new types add expressivity to the type system, and we were able to typecheck programs that

were not well-typed previously.

134

BIBLIOGRAPHY

[AJ94] S. Abramsky and A. Jung. “Domain Theory.” In: Handbook of Logic in Computer Science.
Ed. by S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum. Vol. 3. Clarendon Press,
1994, pp. 1–168.

[App11] Andrew W. Appel. “Verified Software Toolchain.” In: Programming Languages and Sys-
tems. Ed. by Gilles Barthe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–
17. ISBN: 978-3-642-19718-5.

[Bar+97] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe
Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan
Murthy, et al. “The Coq proof assistant reference manual: Version 6.1.” PhD thesis.
Inria, 1997.

[BCG88] M.C. Browne, E.M. Clarke, and O. Grümberg. “Characterizing finite Kripke structures
in propositional temporal logic.” In: Theoretical Computer Science 59.1 (1988), pp. 115–
131. ISSN: 0304-3975. DOI: https ://doi .org/10 .1016/0304- 3975(88)90098- 9. URL:
https://www.sciencedirect.com/science/article/pii/0304397588900989.

[BCO05] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. “A Decidable Fragment of
Separation Logic.” In: FSTTCS 2004: Foundations of Software Technology and Theoreti-
cal Computer Science. Ed. by Kamal Lodaya and Meena Mahajan. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 97–109. ISBN: 978-3-540-30538-5.

[Biz+19] Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. “Iron: managing
obligations in higher-order concurrent separation logic.” In: Proc. ACM Program. Lang.
3.POPL (Jan. 2019). DOI: 10.1145/3290378. URL: https://doi.org/10.1145/3290378.

[Boy03] John Boyland. “Checking Interference with Fractional Permissions.” In: Static Anal-
ysis. Ed. by Radhia Cousot. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 55–72. ISBN: 978-3-540-44898-3.

[BV14] James Brotherston and Jules Villard. “Parametric completeness for separation theo-
ries.” In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’14. San Diego, California, USA: Association for Com-
puting Machinery, 2014, pp. 453–464. ISBN: 9781450325448. DOI: 10 . 1145 / 2535838 .
2535844. URL: https://doi.org/10.1145/2535838.2535844.

[Cal+15] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimei-
jer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma
Rodriguez. “Moving Fast with Software Verification.” In: NASA Formal Methods. Ed.
by Klaus Havelund, Gerard Holzmann, and Rajeev Joshi. Cham: Springer Interna-
tional Publishing, 2015, pp. 3–11. ISBN: 978-3-319-17524-9.

135

https://doi.org/https://doi.org/10.1016/0304-3975(88)90098-9
https://www.sciencedirect.com/science/article/pii/0304397588900989
https://doi.org/10.1145/3290378
https://doi.org/10.1145/3290378
https://doi.org/10.1145/2535838.2535844
https://doi.org/10.1145/2535838.2535844
https://doi.org/10.1145/2535838.2535844

[Cha+23] Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic.
“Choice Trees: Representing Nondeterministic, Recursive, and Impure Programs in
Coq.” In: Proc. ACM Program. Lang. 7.POPL (Jan. 2023). DOI: 10.1145/3571254. URL:
https://doi.org/10.1145/3571254.

[Cha24] Arthur Charguéraud. Separation Logic Foundations. Ed. by Benjamin C. Pierce. Vol. 6.
Software Foundations. Electronic textbook, 2024.

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. “Local Action and Ab-
stract Separation Logic.” In: Proceedings of the 22nd Annual IEEE Symposium on Logic
in Computer Science. LICS ’07. USA: IEEE Computer Society, 2007, pp. 366–378. ISBN:
0769529089. DOI: 10.1109/LICS.2007.30. URL: https://doi.org/10.1109/LICS.2007.30.

[CPN98] David G. Clarke, John M. Potter, and James Noble. “Ownership types for flexible alias
protection.” In: SIGPLAN Not. 33.10 (Oct. 1998), pp. 48–64. ISSN: 0362-1340. DOI: 10.
1145/286942.286947. URL: https://doi.org/10.1145/286942.286947.

[DGW10] Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse. “Abstraction
and Refinement for Local Reasoning.” In: Verified Software: Theories, Tools, Experiments.
Ed. by Gary T. Leavens, Peter O’Hearn, and Sriram K. Rajamani. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 199–215. ISBN: 978-3-642-15057-9.

[Din+13] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkinson, and
Hongseok Yang. “Views: Compositional Reasoning for Concurrent Programs.” In:
Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’13. Rome, Italy: Association for Computing Machinery,
2013, pp. 287–300. ISBN: 9781450318327. DOI: 10.1145/2429069.2429104. URL: https:
//doi.org/10.1145/2429069.2429104.

[Doc+16] Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman, Dylan McNamee, and
Aaron Tomb. “Constructing Semantic Models of Programs with the Software Analy-
sis Workbench.” In: Verified Software. Theories, Tools, and Experiments. Ed. by Sandrine
Blazy and Marsha Chechik. Cham: Springer International Publishing, 2016, pp. 56–72.
ISBN: 978-3-319-48869-1.

[Dod+09] Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. “Deny-
Guarantee Reasoning.” In: Proceedings of the 18th European Symposium on Program-
ming Languages and Systems: Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009. ESOP ’09. York, UK: Springer-Verlag, 2009,
pp. 363–377. ISBN: 9783642005893. DOI: 10 . 1007 / 978 - 3 - 642 - 00590 - 9 _ 26. URL:
https://doi.org/10.1007/978-3-642-00590-9_26.

[Fen09] Xinyu Feng. “Local Rely-Guarantee Reasoning.” In: SIGPLAN Not. 44.1 (Jan. 2009),
pp. 315–327. ISSN: 0362-1340. DOI: 10.1145/1594834.1480922. URL: https://doi.org/
10.1145/1594834.1480922.

136

https://doi.org/10.1145/3571254
https://doi.org/10.1145/3571254
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1145/286942.286947
https://doi.org/10.1145/286942.286947
https://doi.org/10.1145/286942.286947
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1007/978-3-642-00590-9_26
https://doi.org/10.1007/978-3-642-00590-9_26
https://doi.org/10.1145/1594834.1480922
https://doi.org/10.1145/1594834.1480922
https://doi.org/10.1145/1594834.1480922

[FFS07] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. “On the Relationship Between Con-
current Separation Logic and Assume-Guarantee Reasoning.” In: Programming Lan-
guages and Systems. Ed. by Rocco De Nicola. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2007, pp. 173–188. ISBN: 978-3-540-71316-6.

[FGP14] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. “The Spirit of
Ghost Code.” In: Computer Aided Verification. Ed. by Armin Biere and Roderick Bloem.
Cham: Springer International Publishing, 2014, pp. 1–16. ISBN: 978-3-319-08867-9.

[Fos+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and
Alan Schmitt. “Combinators for bidirectional tree transformations: A linguistic ap-
proach to the view-update problem.” In: ACM Trans. Program. Lang. Syst. 29.3 (May
2007), 17–es. ISSN: 0164-0925. DOI: 10.1145/1232420.1232424. URL: https://doi.org/
10.1145/1232420.1232424.

[Gäh+22] Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Rob-
bert Krebbers, Jeehoon Kang, and Derek Dreyer. “Simuliris: a separation logic frame-
work for verifying concurrent program optimizations.” In: Proc. ACM Program. Lang.
6.POPL (Jan. 2022). DOI: 10.1145/3498689. URL: https://doi.org/10.1145/3498689.

[GEG13] Colin S. Gordon, Michael D. Ernst, and Dan Grossman. “Rely-Guarantee References
for Refinement Types over Aliased Mutable Data.” In: Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation. PLDI ’13.
Seattle, Washington, USA: Association for Computing Machinery, 2013, pp. 73–84.
ISBN: 9781450320146. DOI: 10.1145/2491956.2462160. URL: https://doi.org/10.1145/
2491956.2462160.

[Hay71] Patrick J. Hayes. The frame problem and related problems in artificial intelligence. Tech. rep.
Stanford, CA, USA, 1971.

[HBK19] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. “Actris: session-
type based reasoning in separation logic.” In: Proc. ACM Program. Lang. 4.POPL (Dec.
2019). DOI: 10.1145/3371074. URL: https://doi.org/10.1145/3371074.

[He+21] Paul He, Eddy Westbrook, Brent Carmer, Chris Phifer, Valentin Robert, Karl
Smeltzer, Andrei Ştefănescu, Aaron Tomb, Adam Wick, Matthew Yacavone, and
Steve Zdancewic. “A Type System for Extracting Functional Specifications from
Memory-Safe Imperative Programs.” In: Proc. ACM Program. Lang. 5.OOPSLA (Oct.
2021). DOI: 10.1145/3485512. URL: https://doi.org/10.1145/3485512.

[HFP24] Son Ho, Aymeric Fromherz, and Jonathan Protzenko. Sound Borrow-Checking for Rust
via Symbolic Semantics. 2024. arXiv: 2404.02680 [cs.PL].

137

https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/3498689
https://doi.org/10.1145/3498689
https://doi.org/10.1145/2491956.2462160
https://doi.org/10.1145/2491956.2462160
https://doi.org/10.1145/2491956.2462160
https://doi.org/10.1145/3371074
https://doi.org/10.1145/3371074
https://doi.org/10.1145/3485512
https://doi.org/10.1145/3485512
https://arxiv.org/abs/2404.02680

[Hoa69] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming.” In: Commun. ACM
12.10 (Oct. 1969), pp. 576–580. ISSN: 0001-0782. DOI: 10 . 1145 / 363235 . 363259. URL:
https://doi.org/10.1145/363235.363259.

[HP22] Son Ho and Jonathan Protzenko. “Aeneas: Rust verification by functional translation.”
In: Proc. ACM Program. Lang. 6.ICFP (Aug. 2022). DOI: 10.1145/3547647. URL: https:
//doi.org/10.1145/3547647.

[JB12] Jonas Braband Jensen and Lars Birkedal. “Fictional Separation Logic.” In: Program-
ming Languages and Systems. Ed. by Helmut Seidl. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 377–396. ISBN: 978-3-642-28869-2.

[Jon83] C. B. Jones. “Tentative Steps toward a Development Method for Interfering Pro-
grams.” In: ACM Trans. Program. Lang. Syst. 5.4 (Oct. 1983), pp. 596–619. ISSN:
0164-0925. DOI: 10.1145/69575.69577. URL: https://doi.org/10.1145/69575.69577.

[Jun+15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars
Birkedal, and Derek Dreyer. “Iris: Monoids and Invariants as an Orthogonal Basis
for Concurrent Reasoning.” In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’15. Mumbai, India: Associa-
tion for Computing Machinery, 2015, pp. 637–650. ISBN: 9781450333009. DOI: 10.1145/
2676726.2676980. URL: https://doi.org/10.1145/2676726.2676980.

[Jun+17] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “RustBelt: Se-
curing the Foundations of the Rust Programming Language.” In: Proc. ACM Program.
Lang. 2.POPL (Dec. 2017). DOI: 10 .1145/3158154. URL: https ://doi .org/10.1145/
3158154.

[Jun+19] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. “Stacked borrows: an
aliasing model for Rust.” In: Proc. ACM Program. Lang. 4.POPL (Dec. 2019). DOI: 10.
1145/3371109. URL: https://doi.org/10.1145/3371109.

[KMV15] Johannes Kloos, Rupak Majumdar, and Viktor Vafeiadis. “Asynchronous liquid sep-
aration types.” In: 29th European Conference on Object-Oriented Programming (ECOOP
2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

[KN23] Steve Klabnik and Carol Nichols. The Rust programming language. No Starch Press,
2023.

[Kri+21] Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies. “Ghost State.”
In: Automated Verification of Concurrent Search Structures. Cham: Springer International
Publishing, 2021, pp. 37–49. ISBN: 978-3-031-01806-0. DOI: 10.1007/978-3-031-01806-
0_4. URL: https://doi.org/10.1007/978-3-031-01806-0_4.

138

https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371109
https://doi.org/10.1007/978-3-031-01806-0_4
https://doi.org/10.1007/978-3-031-01806-0_4
https://doi.org/10.1007/978-3-031-01806-0_4

[Ler09] Xavier Leroy. “Formal Verification of a Realistic Compiler.” In: Commun. ACM 52.7
(July 2009), pp. 107–115. ISSN: 0001-0782. DOI: 10.1145/1538788.1538814. URL: https:
//doi.org/10.1145/1538788.1538814.

[LFF12] Hongjin Liang, Xinyu Feng, and Ming Fu. “A rely-guarantee-based simulation
for verifying concurrent program transformations.” In: Proceedings of the 39th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’12. Philadelphia, PA, USA: Association for Computing Machinery, 2012,
pp. 455–468. ISBN: 9781450310833. DOI: 10 . 1145 / 2103656 . 2103711. URL: https :
//doi.org/10.1145/2103656.2103711.

[MAC14] Filipe Militão, Jonathan Aldrich, and Luís Caires. “Rely-Guarantee Protocols.” In:
ECOOP 2014 – Object-Oriented Programming. Ed. by Richard Jones. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 334–359. ISBN: 978-3-662-44202-9.

[Mat+22] Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer.
“RustHornBelt: a semantic foundation for functional verification of Rust programs
with unsafe code.” In: Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation. PLDI 2022. San Diego, CA, USA:
Association for Computing Machinery, 2022, pp. 841–856. ISBN: 9781450392655. DOI:
10.1145/3519939.3523704. URL: https://doi.org/10.1145/3519939.3523704.

[Mee88] Lambert Meertens. “First steps towards the theory of rose trees.” In: CWI, Amsterdam
(1988).

[Mil78] Robin Milner. “A theory of type polymorphism in programming.” In: Journal of Com-
puter and System Sciences 17.3 (1978), pp. 348–375. ISSN: 0022-0000. DOI: https://doi.
org/10.1016/0022-0000(78)90014-4. URL: https://www.sciencedirect.com/science/
article/pii/0022000078900144.

[Mil80] Robin Milner. A calculus of communicating systems. Springer, 1980.

[MJP20] Glen Mével, Jacques-Henri Jourdan, and François Pottier. “Cosmo: a concurrent sep-
aration logic for multicore OCaml.” In: Proc. ACM Program. Lang. 4.ICFP (Aug. 2020).
DOI: 10.1145/3408978. URL: https://doi.org/10.1145/3408978.

[Mou+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. “The Lean Theorem Prover (System Description).” In: Automated Deduction
- CADE-25. Ed. by Amy P. Felty and Aart Middeldorp. Cham: Springer International
Publishing, 2015, pp. 378–388. ISBN: 978-3-319-21401-6.

[MTK20] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. “RustHorn: CHC-Based
Verification for Rust Programs.” In: Programming Languages and Systems. Ed. by Peter
Müller. Cham: Springer International Publishing, 2020, pp. 484–514. ISBN: 978-3-030-
44914-8.

139

https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://doi.org/10.1145/3408978
https://doi.org/10.1145/3408978

[Nak+24] Takashi Nakayama, Yusuke Matsushita, Ken Sakayori, Ryosuke Sato, and Naoki
Kobayashi. “Borrowable Fractional Ownership Types for Verification.” In: Verifica-
tion, Model Checking, and Abstract Interpretation. Ed. by Rayna Dimitrova, Ori Lahav,
and Sebastian Wolff. Cham: Springer Nature Switzerland, 2024, pp. 224–246. ISBN:
978-3-031-50521-8.

[NMB08] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. “Hoare Type Theory, Poly-
morphism and Separation.” In: J. Funct. Program. 18.5–6 (Sept. 2008), pp. 865–911.
ISSN: 0956-7968. DOI: 10.1017/S0956796808006953. URL: https://doi.org/10.1017/
S0956796808006953.

[OG76] Susan Owicki and David Gries. “An Axiomatic Proof Technique for Parallel Programs
I.” In: Acta Inf. 6.4 (Dec. 1976), pp. 319–340. ISSN: 0001-5903. DOI: 10.1007/BF00268134.
URL: https://doi.org/10.1007/BF00268134.

[OHe07] Peter W. O’Hearn. “Resources, Concurrency, and Local Reasoning.” In: Theor. Comput.
Sci. 375.1–3 (Apr. 2007), pp. 271–307. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2006.12.035.
URL: https://doi.org/10.1016/j.tcs.2006.12.035.

[Par10] Matthew Parkinson. “The Next 700 Separation Logics.” In: Verified Software: Theories,
Tools, Experiments. Ed. by Gary T. Leavens, Peter O’Hearn, and Sriram K. Rajamani.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 169–182. ISBN: 978-3-642-
15057-9.

[Pea21] David J. Pearce. “A Lightweight Formalism for Reference Lifetimes and Borrowing
in Rust.” In: ACM Trans. Program. Lang. Syst. 43.1 (Apr. 2021). ISSN: 0164-0925. DOI:
10.1145/3443420. URL: https://doi.org/10.1145/3443420.

[PP13] François Pottier and Jonathan Protzenko. “Programming with Permissions in
Mezzo.” In: SIGPLAN Not. 48.9 (Sept. 2013), pp. 173–184. ISSN: 0362-1340. DOI:
10.1145/2544174.2500598. URL: https://doi.org/10.1145/2544174.2500598.

[PPS22] Étienne Payet, David J. Pearce, and Fausto Spoto. “On the Termination of Borrow
Checking in Featherweight Rust.” In: NASA Formal Methods. Ed. by Jyotirmoy V.
Deshmukh, Klaus Havelund, and Ivan Perez. Cham: Springer International Publish-
ing, 2022, pp. 411–430. ISBN: 978-3-031-06773-0.

[Rey02] J.C. Reynolds. “Separation logic: a logic for shared mutable data structures.” In: Pro-
ceedings 17th Annual IEEE Symposium on Logic in Computer Science. 2002, pp. 55–74.
DOI: 10.1109/LICS.2002.1029817.

[Rey78] John C. Reynolds. “Syntactic control of interference.” In: Proceedings of the 5th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages. POPL ’78.
Tucson, Arizona: Association for Computing Machinery, 1978, pp. 39–46. ISBN:

140

https://doi.org/10.1017/S0956796808006953
https://doi.org/10.1017/S0956796808006953
https://doi.org/10.1017/S0956796808006953
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/BF00268134
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/3443420
https://doi.org/10.1145/3443420
https://doi.org/10.1145/2544174.2500598
https://doi.org/10.1145/2544174.2500598
https://doi.org/10.1109/LICS.2002.1029817

9781450373487. DOI: 10.1145/512760.512766. URL: https://doi.org/10.1145/512760.
512766.

[Sam+21] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek
Dreyer, and Deepak Garg. “RefinedC: automating the foundational verification of
C code with refined ownership types.” In: Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation. PLDI
2021. Virtual, Canada: Association for Computing Machinery, 2021, pp. 158–174.
ISBN: 9781450383912. DOI: 10.1145/3453483.3454036. URL: https://doi.org/10.1145/
3453483.3454036.

[Sie+15] Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-Pharabod. “A
separation logic for fictional sequential consistency.” In: European Symposium on Pro-
gramming Languages and Systems. Springer. 2015, pp. 736–761.

[Sil+23a] Lucas Silver, Paul He, Ethan Cecchetti, Andrew K. Hirsch, and Steve Zdancewic. “Se-
mantics for Noninterference with Interaction Trees.” In: 37th European Conference on
Object-Oriented Programming (ECOOP 2023). Ed. by Karim Ali and Guido Salvaneschi.
Vol. 263. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 29:1–29:29. ISBN: 978-
3-95977-281-5. DOI: 10.4230/LIPIcs.ECOOP.2023.29. URL: https://drops.dagstuhl.de/
entities/document/10.4230/LIPIcs.ECOOP.2023.29.

[Sil+23b] Lucas Silver, Eddy Westbrook, Matthew Yacavone, and Ryan Scott. “Interaction Tree
Specifications: A Framework for Specifying Recursive, Effectful Computations That
Supports Auto-Active Verification.” In: 37th European Conference on Object-Oriented
Programming (ECOOP 2023). Ed. by Karim Ali and Guido Salvaneschi. Vol. 263. Leib-
niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 30:1–30:26. ISBN: 978-3-95977-281-
5. DOI: 10.4230/LIPIcs.ECOOP.2023.30. URL: https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ECOOP.2023.30.

[Sil23] Lucas Silver. “Interaction Trees and Formal Specifications.” PhD thesis. University of
Pennsylvania, 2023.

[SLL20] Ayesha Sadiq, Yuan-Fang Li, and Sea Ling. “A survey on the use of access permission-
based specifications for program verification.” In: Journal of Systems and Software 159
(2020), p. 110450. ISSN: 0164-1212. DOI: https://doi.org/10.1016/j.jss.2019.110450.
URL: https://www.sciencedirect.com/science/article/pii/S0164121219302249.

[Swa+16] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin.
“Dependent types and multi-monadic effects in F*.” In: Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

141

https://doi.org/10.1145/512760.512766
https://doi.org/10.1145/512760.512766
https://doi.org/10.1145/512760.512766
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.29
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.30
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.30
https://doi.org/https://doi.org/10.1016/j.jss.2019.110450
https://www.sciencedirect.com/science/article/pii/S0164121219302249

POPL ’16. St. Petersburg, FL, USA: Association for Computing Machinery, 2016,
pp. 256–270. ISBN: 9781450335492. DOI: 10 . 1145 / 2837614 . 2837655. URL: https :
//doi.org/10.1145/2837614.2837655.

[Tar55] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applications.” In: Pacific
journal of Mathematics 5.2 (1955), pp. 285–309.

[Ull16] Sebastian Ullrich. “Simple Verification of Rust Programs via Functional Purification.”
MA thesis. Karlsruhe Institute of Technology, 2016.

[VB23] Simon Friis Vindum and Lars Birkedal. “Spirea: A Mechanized Concurrent Separation
Logic for Weak Persistent Memory.” In: Proc. ACM Program. Lang. 7.OOPSLA2 (Oct.
2023). DOI: 10.1145/3622820. URL: https://doi.org/10.1145/3622820.

[VP07] Viktor Vafeiadis and Matthew Parkinson. “A Marriage of Rely/Guarantee and Sepa-
ration Logic.” In: Proceedings of the 18th International Conference on Concurrency Theory.
CONCUR’07. Lisbon, Portugal: Springer-Verlag, 2007, pp. 256–271. ISBN: 3540744061.

[VP23] Paulo Emílio de Vilhena and François Pottier. “A Type System for Effect Handlers
and Dynamic Labels.” In: Programming Languages and Systems. Ed. by Thomas Wies.
Cham: Springer Nature Switzerland, 2023, pp. 225–252. ISBN: 978-3-031-30044-8.

[WF94] A.K. Wright and M. Felleisen. “A Syntactic Approach to Type Soundness.” In: Inf.
Comput. 115.1 (Nov. 1994), pp. 38–94. ISSN: 0890-5401. DOI: 10.1006/inco.1994.1093.
URL: https://doi.org/10.1006/inco.1994.1093.

[Xia+19] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin
C. Pierce, and Steve Zdancewic. “Interaction Trees: Representing Recursive and Im-
pure Programs in Coq.” In: Proc. ACM Program. Lang. 4.POPL (Dec. 2019). DOI: 10 .
1145/3371119. URL: https://doi.org/10.1145/3371119.

[Yan07] Hongseok Yang. “Relational separation logic.” In: Theor. Comput. Sci. 375.1–3 (Apr.
2007), pp. 308–334. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2006.12.036. URL: https://doi.
org/10.1016/j.tcs.2006.12.036.

[Zak+21] Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve
Zdancewic. “Modular, compositional, and executable formal semantics for LLVM IR.”
In: Proc. ACM Program. Lang. 5.ICFP (Aug. 2021). DOI: 10.1145/3473572. URL: https:
//doi.org/10.1145/3473572.

[Zha+21] Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-Yao Xia, Lennart
Beringer, William Mansky, Benjamin Pierce, and Steve Zdancewic. “Verifying
an HTTP Key-Value Server with Interaction Trees and VST.” In: 12th Interna-
tional Conference on Interactive Theorem Proving (ITP 2021). Ed. by Liron Cohen
and Cezary Kaliszyk. Vol. 193. Leibniz International Proceedings in Informatics

142

https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/3622820
https://doi.org/10.1145/3622820
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1016/j.tcs.2006.12.036
https://doi.org/10.1016/j.tcs.2006.12.036
https://doi.org/10.1016/j.tcs.2006.12.036
https://doi.org/10.1145/3473572
https://doi.org/10.1145/3473572
https://doi.org/10.1145/3473572

(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021, 32:1–32:19. ISBN: 978-3-95977-188-7. DOI: 10 . 4230 / LIPIcs . ITP. 2021 . 32. URL:
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.32.

143

https://doi.org/10.4230/LIPIcs.ITP.2021.32
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.32

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	Introduction
	Motivation
	Heapster
	Theory of Heapster
	Contribution and Attribution
	Dissertation Structure

	Background
	Rely-Guarantee Reasoning
	Separation Logic
	Interaction Trees

	Related Work
	Semantics of Separation Logic
	Extracting Rust to Functional Specifications
	Combining Rely-Guarantee and Separation Logic
	Permission-Based Type Systems

	Rely-Guarantee Permissions
	The Rely-Guarantee Permission Lattice
	Coexistence
	Permission Changes
	Permission Sets

	A Simple Separation-Logic Type System
	Defining Typing
	General Typing Rules
	Defining Memory Operations
	Type Soundness
	Memory Typing Rules

	Specification Extraction
	Definitions and Semantic Typing
	Permission Types
	Pointer Types
	Array Types
	Recursive Types
	A Bigger Example
	The Heapster Tool

	Lifetimes
	Defining Lifetime Operations
	Lifetime Permissions
	Recovering Split Permissions
	Lifetime Types and Typing Rules
	A Lifetime Example
	Differences with Heapster Lifetimes

	Future Work and Conclusion
	Concurrency
	Adding Invariants to Rely-Guarantee Permissions
	Conclusion

	BIBLIOGRAPHY

