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Abstract. The study of word equations is a central topic in mathemat-
ics and theoretical computer science. Recently, the question of whether
a given word equation, augmented with various constraints/extensions,
has a solution has gained critical importance in the context of string
SMT solvers for security analysis. We consider the decidability of this
question in several natural variants and thus shed light on the bound-
ary between decidability and undecidability for many fragments of the
first order theory of word equations and their extensions. In particular,
we show that when extended with several natural predicates on words,
the existential fragment becomes undecidable. On the other hand, the
positive Σ2 fragment is decidable, and in the case that at most one ter-
minal symbol appears in the equations, remains so even when length
constraints are added. Moreover, if negation is allowed, it is possible to
model arbitrary equations with length constraints using only equations
containing a single terminal symbol and length constraints. Finally, we
show that deciding whether solutions exist for a restricted class of equa-
tions, augmented with many of the predicates leading to undecidability
in the general case, is possible in non-deterministic polynomial time.
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1 Introduction

A word equation is a formal equality U = V , where U and V are words (called
the left and right side of the equation respectively) over an alphabet A∪X; A =
{a, b, c, . . .} is the alphabet of constants or terminals and X = {x1, x2, x3, . . .}
is the set of variables. A solution to the equation U = V is a morphism h :
(A ∪ X)∗ → A∗ that acts as the identity on A and satisfies h(U) = h(V ); h is
called the assignment to the variables of the equation. For instance, U = x1abx2

and V = ax1x2b define the equation x1abx2 = ax1x2b, whose solutions are the
morphisms h with h(x1) = ak, for k ≥ 0, and h(x2) = b�, for � ≥ 0. An equation
is satisfiable (in A∗) if it admits a solution h : (A∪X)∗ → A∗. A set (or system)
of equations is satisfiable if there exists an assignment of the variables of the
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equations in this set that is a solution for all equations. In logical terms, word
equations are often investigated as fragments of the first order theory FO(A∗, ·) of
strings. Karhumäki et al. [18] showed that deciding the satisfiability of a system
of word equations, that is, checking the truth of formulas from the existential
theory Σ1 of FO(A∗, ·), can be reduced to deciding the satisfiability of a single
(more complex) word equation that encodes the respective system.

The existential theory of word equations has been studied for decades in
mathematics and theoretical computer science with a particular focus on the
decidability of the satisfiability of logical formulae defined over word equations.
Quine [28] proved in 1946 that the first-order theory of word equations is equiv-
alent to the first-order theory of arithmetic, which is known to be undecidable.
In order to solve Hilbert’s tenth problem in the negative [14], Markov later
showed a reduction from word equations to Diophantine equations (see [21,22]
and the references therein), in the hopes that word equations would prove to be
undecidable. However, Makanin [22] proved in 1977 that the satisfiability of word
equations is in fact decidable. Though Markov’s approach was unsuccessful, sim-
ilar ones, based on extended theories of word equations, can also be explored.
Matiyasevich [25] showed in 1968 a reduction from the more powerful theory of
word equations with linear length constraints (i.e., linear relations between word
lengths) to Diophantine equations. Whether this theory is decidable remains a
major open problem. More than a decade after Makanin’s decidability result,
the focus shifted towards identifying the complexity of solving word equations.
Plandowski [27] showed in 1999 that this problem is in PSPACE. Recently, in a
series of papers (see specifically e.g., [15,16]), Jez applied a new technique called
recompression to word equations. This lead to, ultimately, a proof that the sat-
isfiability of word equations can be decided in linear space. However, there is a
mismatch between this upper bound and the known lower bound: solving word
equations is NP-hard, but whether the problem is NP-complete remains open.

In recent years, deciding the satisfiability of systems of word equations has
also become an important problem in fields such as formal verification and secu-
rity where string solvers such as HAMPI [19], CVC4 [3], Stranger [31], ABC [2],
Norn [1], S3P [29] and Z3str3 [4] have become more popular. However, in prac-
tice more functionality than just word equations is required, so solvers often
extend the theory of word equations with certain functions (e.g., linear arith-
metic over the length, replace-all, extract, reverse, etc.) and predicates (e.g.,
numeric-string conversion predicate, regular-expression membership, etc.). Most
of these extensions are not expressible by word equations, in the sense introduced
by Karhumäki et al. [18], and some of them lead to undecidable theories. On the
one hand, regular (or rational) constraints or constraints based on involutions
(allowing to model the mirror image, or, when working with equations in free
groups, inverse elements), are not expressible, see [6,18], but adding them to
word equations preserves the decidability [8]. As mentioned above, whether the
theory of word equations enhanced with a length function is decidable is still
a major open problem. On the other hand, the satisfiability of word equations
extended with a replace-all operator was shown to be undecidable in [20], and
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the same holds when a numeric-string conversion predicate is added. Due to
this very complex and fuzzy picture, none of the solvers mentioned above has a
complete algorithm.

Our Contributions: In this setting, our work aims to provide a better understand-
ing of the boundary between extensions and restrictions of the theory of word
equations for which satisfiability is decidable and, respectively, undecidable.

Firstly, we present a series of undecidability results for the Σ1-fragment of
FO(A∗, ·) extended with simple predicates or functions. In the main result on
this topic, we show that extending Σ1 with constraints imposing that a string
is the morphic image of another one also leads to an undecidable theory. These
results are related to the study of theories of quantifier-free word equations
constrained by very simple relations, see, e.g., [6,13]. While our results do not
settle the decidability of the theory of word equations with length constraints,
they enforce the intuitive idea that enhancing the theory of word equations with
predicates providing very little control on the combinatorial structure of the
solutions of the equation leads to undecidability.

We further explore the border between decidability and undecidability when
considering formulae over word equations allowing at most one quantifier alter-
nation. We show that checking the truth of an arbitrary Σ2-formula is equiva-
lent to, on the one hand, checking the truth of a ∃∗∀∗-quantified terminal-free
formula, or, on the other hand, to a single ∃∗∀∗-quantified inequation whose
sides contain at most two terminals. Since the Inclusion of Pattern Languages
problem (see [5,11,17]) can be reformulated as checking the truth of a single
∃∗∀∗-quantified inequation whose sides contain at most two terminals and are
variable disjoint, and it is undecidable, we obtain a clear image of the simplest
undecidable classes of Σ2-formulae. Consequently, we consider decidable cases.
Complementary to the above, we show that the satisfiability in an arbitrary free
monoid A∗ of quantifier free positive formulae over word equations (formulae
obtained by iteratively applying only conjunction and disjunction to word equa-
tions of the form U = V ), in which we have at most one terminal a ∈ A (appear-
ing zero or several times) and no restriction on the usage of variables, enhanced
with linear length constraints, is decidable, and, moreover, NP-complete. The
decidability is preserved when considering positive Σ2-formulae of this kind, as
opposed to the case of arbitrary Σ2 terminal-free formulae, mentioned above.
Moreover, if we allow negated equations in the quantifier-free formulae (so arbi-
trary Σ1-formulae) with at most one terminal, and length constraints, we obtain
a decidable theory if and only if the general theory of equations with length
constraints is decidable. Putting together these results, we draw a rather precise
border between the decidable and undecidable subclasses of the Σ2-fragment
over word equations, defined by restrictions on the number of terminals allowed
to occur in the equations and the presence or absence of inequations. As a corol-
lary, we can show that deciding the truth of arbitrary formulae from the positive
Σ2-fragment of FO(A∗, ·) (i.e., ∃∗∀∗ quantified positive formulae), without length
constraints, is decidable. The resulting proof follows arguments partly related
to those in [9,23]. This result is strongly related to the work of [10,12,28], in
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which it was shown that the validity of sentences from the positive Π2-fragment
of FO(A∗, ·) (i.e., where the quantifier alternation was ∀∗∃∗) is undecidable, as
well as to the results of [30] in which it was shown that the truth of arbitrarily
quantified positive formulae over word equations is decidable over an infinite
alphabet of terminals.

We then extend our approach in a way partly motivated by the practical
aspects of solving word equations. Most equations that can be successfully solved
by string solvers (e.g., Z3str3) must be in solved form [12], or must not contain
overlapping variables [32]. In a sense, this suggests that in practice it is inter-
esting to find equations with restricted form that can be solved in reasonable
time. We analyse, from a theoretical point of view, one of the simplest classes
of equations that are not in solved form or contain equations with overlapping
variables, namely strictly regular-ordered equations (each variable occurs exactly
once in each side, and the order in which the variables occur is the same). We
show that the satisfiability of such equations, even when enhanced with various
predicates, is decidable. In particular we show that when extended with regu-
lar constraints (given by DFAs), linear length constraints, abelian equivalence
constraints (two variables should be substituted for abelian-equivalent words),
subword constraints (one variable should be a (scattered) subword of another),
and Eqa constraints (two variables should have the same number of occurrences
of a letter a), the satisfiability problem remains NP-complete. Thus, there is
hope that they can be solved reasonably fast by string solvers based on, e.g.,
SAT-solvers. This line of results is also related to the investigations initiated in
[7,24], in which the authors were interested in the complexity of solving equa-
tions of restricted form. In the most significant result of [7], it was shown that
deciding the satisfiability of strictly regular-ordered equations (with or without
regular constraints) is NP-complete, which makes this class of word equations
one of simplest known classes of word equations that are hard to solve. Although
these results regard a very restricted class of equations, they might provide some
insights in tackling harder classes, such as, e.g., quadratic equations.

The organization of the paper is as follows. In Sect. 2 we introduce the basic
notions we use. In Sect. 3, we present firstly the undecidability results related to
theories over word equations extended with various simple predicates, secondly
the undecidability and decidability results related to quantifier alternation, and
thirdly, we present the results related to strictly regular-ordered equations. Due
to space constraints, some proofs are omitted, or only briefly sketched.

2 Preliminaries

Let N be the set of natural numbers, and let N≤n be the set {1, 2, . . . , n}. Let
A be an alphabet of letters (or symbols). Let A∗ be the set of all words over
A and ε be the empty word. Note that A∗ is a monoid w.r.t. the concatenation
of words. Let |w| denote the length of a word w and for each a ∈ A, let |w|a
denote the number of occurrences of a in w. For 1 ≤ i ≤ |w| we denote by w[i]
the letter on the ith position of w. A word w is p-periodic for p ∈ N (p is called
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a period of w) if w[i] = w[i + p] for all 1 ≤ i ≤ |w| − p; the smallest period of a
word is called its period. If w = v1v2v3 for some words v1, v2, v3 ∈ A∗, then v1 is
called a prefix of w, v1, v2, v3 are factors of w, and v3 is a suffix of w. Two words
w and u are called conjugate if there exist non-empty words v1, v2 such that
w = v1v2 and u = v2v1. A word v ∈ A∗ is a subword of w ∈ A∗ if v = v1 . . . vk,
with vi ∈ A∗, and w = u0v1u1 · · · vkuk, with ui ∈ A∗. A word z ∈ A∗ is in the
shuffle of u, v ∈ A∗, denoted z ∈ uΔv, if z = u1v1 · · · ukvk, with ui, vi ∈ A∗,
and u = u1 · · · uk, v = v1 · · · vk. Two words u, v ∈ A∗ are abelian equivalent if
|u|a = |v|a, for all a ∈ A. The following lemma is well known (see, e.g., [21]).

Lemma 1 (Commutativity Equation). Let v1, v2 ∈ A∗. Then v1v2 = v2v1
if and only if there exist w ∈ A∗ and p, q ∈ N0 such that v1 = wp and v2 = wq.

Let A = {a, b, c, . . .} be a finite alphabet of constants and let X =
{x1, x2, . . .} be an alphabet of variables. Note that we assume X and A are
disjoint, and unless stated otherwise, that |A| ≥ 2. A word α ∈ (A ∪ X)∗

is usually called a pattern. For a pattern α and a letter z ∈ A ∪ X, let |α|z
denote the number of occurrences of z in α; var(α) denotes the set of variables
from X occurring in α. A morphism h : (A ∪ X)∗ → A∗ with h(a) = a for
every a ∈ A is called a substitution. A morphism h : A∗ → B∗ is a projec-
tion if h(a) ∈ {ε, a} for all a ∈ A. We say that α ∈ (A ∪ X)∗ is regular if, for
every x ∈ var(α), we have |α|x = 1; e. g., ax1ax2cx3x4b is regular. Note that
L(α) = {h(α) | h is a substitution} (the pattern language of α) is regular when
α is regular.

A (positive) word equation is a tuple (U, V ) ∈ (A ∪ X)∗ × (A ∪ X)∗; we
usually denote such an equation by U = V , where U is the left hand side (LHS,
for short) and V the right hand side (RHS) of the equation. A negative word
equation, or inequation, is the negation of a word equation, i.e., ¬(U = V ) or
U 	= V .

A solution to an equation U = V (resp., U 	= V ), over an alphabet A,
is a substitution h mapping the variables of UV to words from A∗ such that
h(U) = h(V ) (respectively, h(U) 	= h(V )); h(U) is called the solution word.
Note that we might ask whether a positive or negative equation has a solution
over an alphabet larger than the alphabet of terminals that actually occur in the
respective equation. A word equation is satisfiable over A if it has a solution over
A, and the satisfiability problem is to decide for a given word equation whether
it is satisfiable over a given alphabet A.

Karhumäki et al. [18] have shown that, given two equations E and E′, one
can construct the equations E1, E2, and E3 that are satisfiable in A∗, with
|A| ≥ 2, if and only if E ∧ E′, E ∨ E′, ¬E are satisfiable respectively in A∗. In
this construction, E1 contains exactly the variables of E and E′, while in E2

and E3 new variables are added with respect to those in the given equations;
in all cases, even if E and E′ were terminal-free, the new equations contain
terminals. We use this result to show that for every quantifier-free first order
formula over word equations we can construct a single equation that may contain
extra variables and terminals, and is satisfiable if and only if the initial formula
was satisfiable. Moreover, the values the variables of the initial equations may
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take in the satisfying assignments of the new equation are exactly the same
values they took in the satisfying assignments of the initial formula. We also use
in several occasions the following result from [18].

Lemma 2. Let U, V, U ′, V ′ ∈ (X ∪ A)∗, Z1 =UaU ′UbU ′, Z2 =V aV ′V bV ′. For
any substitution h : X∗ →A∗, h(Z1)=h(Z2) iff h(U)=h(V ) and h(U ′)=h(V ′).

In this paper we address equations with restricted form. A word equation
U = V is regular if both U and V are regular patterns. We call a regular
equation ordered if the order in which the variables occur in both sides of the
equation is the same; that is, if x and y are variables occurring both in U
and V , then x occurs before y in U if and only if x occurs before y in V .
Moreover, we say a regular-ordered equation is strict if each variable occurs in
both sides. For instance x1ax2x3b = x1ax2bx3 is strictly regular-ordered while
x1a = x1x2 is regular-ordered (but not strictly since x2 occurs only on one side)
and x1ax3x2b = x1ax2bx3 is regular but not regular-ordered.

In Sect. 3.3 we also consider equations with regular and linear length con-
straints defined as follows. Given a word equation U = V , a set of linear length
constraints is a system θ of linear Diophantine equations where the unknowns
correspond to the lengths of possible substitutions of each variable x ∈ X. More-
over, given a variable x ∈ X, a regular constraint is, in this paper, a regular
language Lx given by a finite automaton; more general types of regular con-
straints, imposing that the image of a variable belongs to more than one lan-
guage, are sometimes used (see [8] and the references therein). The satisfiability
of word equations with linear length and/or regular constraints is the question of
whether a solution h exists satisfying the system θ and/or such that h(x) ∈ Lx

for each x ∈ X.

3 Results

3.1 Undecidability Results

In this section, we show the undecidability of various extensions of the existential
theory of word equations, defined as binary and 3-ary relations which may easily
be interpreted as predicates. In each case, undecidability is ultimately obtained
by showing that, for a unary-style encoding of integers following [6] (where a
number is represented using the length of a string in the form a∗b, so ε is 0,
b is 1, etc.), the additional predicate(s) can be used to define a multiplication
predicate Multiply(x, y, z) which decides for numbers i, j, k encoded in this way
(i.e., x = ai−1b, y = aj−1b, z = ak−1b), whether k = ij. Since a corresponding
addition predicate can easily be modelled for this encoding using only word
equations, undecidability follows immediately.

Definition 1. Let AbelianEq, MorphIm, Projection, Subword ⊂ A∗ × A∗ and
Shuffle, Insert, Erase ⊂ A∗ × A∗ × A∗ be the relations given by:

– (x, y) ∈ AbelianEq iff x and y are abelian-equivalent,
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– (x, y) ∈ MorphIm iff there exists a morphism h :A∗ →A∗ such that h(x) = y,
– (x, y) ∈ Projection iff there exists a projection π :A∗ →A∗ such that π(x) = y,
– (x, y) ∈ Subword iff x is a (scattered) subword of y.
– (x, y, z) ∈ Shuffle iff z ∈ xΔy,
– (x, y, z) ∈ Erase iff z is obtained from x by removing some occurrences of y,
– (x, y, z) ∈ Insert iff z is obtained from x by inserting some occurrences of y.

For each of the above relations we can also define a predicate with the same name
which returns true iff the tuple of arguments belongs to the relation.

The membership problems for all the above relations are in NP, and therefore
decidable. Our main result of this section concerns the MorphIm predicate:

Theorem 1. Let |A| ≥ 3. Then given the predicate MorphIm, the predicate
Multiply is definable by an existential formula.

Proof. Assume that A contains at least three distinct letters: a, b, c. We shall
actually define a predicate Multiply2(x, y, z) which returns true iff x = aib, y =
ajb, z = aijb and ij ≥ 2. Note that we can immediately obtain Multiply from
this, as Multiply(x, y, z) = Multiply2(ax, ay, az) for x, y, z 	= ε (assuming also
x = y = z = b does not hold). The exceptional cases, when ij < 2 can easily
be handled individually. We define first a predicate checking some ‘initial condi-
tions’:

init(x, x′, x′′, y, y′, z, z′) :=∃w,w′, w′′.x′ =wa ∧ y′ =w′a ∧ (x′ =w′′aa∨y′ =w′′aa)
∧ x′a = ax′ ∧ y′a = ay′ ∧ z′a = az′ ∧ x=x′b ∧ y=y′b ∧ z = z′b ∧ x′′x=xx′′.

Recalling Lemma 1, it is straightforward to see that init evaluates to true if and
only if there exist i, j, k, �, p ∈ N0 with ij ≥ 2 such that (1) x′ = ai, y′ = aj ,
z′ = ak, and (2) x = aib, y = ajb, z = akb, and (3) x′′ = (aib)p. Now we give
the definition of Multiply2 as follows:

Multiply2(x, y, z) :=∃x′, x′′, y′, z′, u, v. init(x, x′, x′′, y, y′, z, z′) ∧ MorphIm(x′′, y′)

∧ MorphIm(y′, x′′) ∧ MorphIm(u, v) ∧ u = x′′
ccx′′x′

ccb ∧ v = z′
ccz′x′

cc.

Suppose that Conditions (1)–(3) are met (i.e., init is satisfied). Consider the
subclause MorphIm(x′′, y′)∧MorphIm(y′, x′′). This is satisfied if and only if there
exist morphisms g, h : A∗ → A∗ such that g((aib)p) = aj and h(aj) = (aib)p.
Clearly, the latter implies that p is a multiple of j, while the former implies that j
is a multiple of p, and hence if both are satisfied then j = p. On the other hand, if
j = p, then it is easy to construct such morphisms (g maps b to a and a to ε while
h maps a to aib). Thus this subclause is satisfied in addition to the init predicate
if and only if Conditions (1)–(3) hold for p = j. By elementary substitutions,
the remaining part (i.e., MorphIm(u, v)∧u = x′′ccx′′x′ccb ∧ v = z′ccz′x′cc) is
also satisfied if and only if u = (aib)jcc(aib)jaiccb, and v = (akccak+icc).
It remains to show that there exists a morphism f : A∗ → A∗ such that
f(u) = v if and only if k = ij. In the case that k = ij, the morphism
f may be given e.g. by f(a) = a, f(b) = ε and f(c) = c. For the other
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direction, assume that such a morphism f exists. Firstly, consider the case
that f(c) ∈ {a, b}∗. Then c must occur in f(a) or f(b). However, under our
assumption that ij ≥ 2, this implies |f(u)|c > 4 meaning f(u) 	= v which is
a contradiction. Consequently, we may infer that f(c) contains the letter c.
Then since |u|c = |v|c, it follows that f(c) = v1cv2 where v1, v2 ∈ {a, b}∗.
Thus f(u) = f((aib)j)v1cv2v1cv2f((aib)j)aiv1cv2v1cv2f(b). It follows that
v1 = v2 = ε, and thus that f(b) = ε. Hence, f(aij) = ak and f(aij+i) = ak+i

must hold. Clearly, f(a) = an for some n ∈ N. Thus we have nij = k and
nij + ni = k + i. Hence, n = 1 and k = ij, as required. 
�

Unlike for the other predicates below, our construction for MorphIm relies
strictly on the alphabet A having at least three letters. This is in particular
contrast to many other results on the (un)decidability theories of word equa-
tions which are usually independent of alphabet size (provided |A| 	= 1). Thus
we consider it to be of particular interest to settle the remaining open case of
whether Theorem 1 holds also for binary alphabets A.

As previously mentioned, further to the predicate MorphIm, many other
natural predicates dealing with basic properties and relationships of words lead
to undecidability. The following result concerns the remaining predicates listed
in Definition 1, and it is obtained by reducing to predicates Onlyas(x, y) and
Onlybs(x, y) which return true if and only if y = a|x|a (respectively, y = b|x|b).
Büchi and Senger [6] show how these predicates can easily be used to model
multiplication, and thus undecidability follows.

Proposition 1. Given any of the predicates AbelianEq, Shuffle, Projection,
Subword, Insert, Erase, the predicates Onlyas and Onlybs are definable by exis-
tential formulas.

The next theorem sums up the consequences of Proposition 1 and Theorem 1.

Theorem 2. The existential theory of word equations becomes undecidable when
augmented with any of the following predicates: AbelianEq, Shuffle, Projection,
Subword, MorphIm (if |A| ≥ 3), Insert, Erase.

3.2 Quantifier Alternation

Next, we focus on extending the existential theory of word equations by allowing,
instead of new predicates, quantifier alternation.

Firstly, recall the Inclusion of Pattern Languages problem (IPL, for short,
see [5,17]): given two patterns α ∈ (A ∪ X)∗ and β ∈ (A ∪ Y )∗, where A is an
alphabet of constants with at least two distinct letters and X and Y are disjoint
sets of variables, decide whether L(α) ⊆ L(β). IPL admits a reformulation in
terms of word equations: decide whether the formula ∃x1, . . . , xn.∀y1, . . . , ym.α 	=
β holds in A∗. As IPL is undecidable for terminal alphabets of size 2 or
more [5,11], it immediately follows that checking the truth value of ∃∗∀∗-
quantified inequation U 	= V in A∗, with |A| ≥ 2, is undecidable even when
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U and V do not contain any common variable, as long as the number of termi-
nals occurring in UV is at least two. This exhibits a very simple fragment of Σ2

that is undecidable.
Further, we show two normal form results for the Σ2-fragment of FO(A∗, ·).

Proposition 2. Let A 	= ∅ be an alphabet. For every formula φ in the Σ2-
fragment of FO(A∗, ·) we can construct a Σ2 terminal-free formula ψ, which
holds in A∗ iff φ holds in A∗.

Proposition 3. Let A be an alphabet, |A| ≥ 2. For every formula φ in the
Σ2-fragment of FO(A∗, ·) we can construct ψ = ∃x1, . . . , xn.∀y1, . . . , ym.U 	= V,
with U, V ∈ (A ∪ {x1, . . . , xn, y1, . . . , ym})∗, such that φ holds in A∗ if and only
if ψ holds in A∗.

Note that Proposition 3 does not follow directly by applying the results
of [18] to the initial arbitrary formula, in order to reduce it to a single equa-
tion. This would have lead to an ∃∗∀∗∃∗-quantified positive equation, so not to
a Σ2-formula.

The results in Propositions 2 and 3 as well as the remarks regarding IPL show
that it is undecidable to check whether some very simple formulae hold in A∗,
when |A| ≥ 2. Also, it is worth noting that applying first Proposition 2 and then
Proposition 3 to an arbitrary Σ2-formula would lead to a single ∃∗∀∗-quantified
inequation which contains two terminals, as the constructions in [18] (used in the
proof of Proposition 3) require at least two terminals in the equation. However,
unlike the inequations encoding IPL instances, the one we obtain by applying
our two propositions does not necessarily fulfil the condition that its sides are
variable disjoint. Thus, it is natural to ask whether every Σ2-formula can be
reduced to an inequation encoding an instance of IPL. We conjecture that the
answer to this question is no.

We have showed that deciding whether a Σ2-formula, whose sides contain
two terminals, holds in A∗ for some |A| ≥ 2 is undecidable. It is possible to show
that, when |A| ≥ 2, for every word equation (which can encode any formula
from the Σ1-fragment of FO(A∗, ·), by [18]) we can construct a word equation
whose sides contain exactly two terminals a and b, and whose solutions over
{a, b} bijectively correspond to the solutions of the initial equation. Thus, solving
a word equation whose sides contain two terminals is as complex as solving
arbitrary word equations.

Hence, we will investigate next which is the case of Σ1 and Σ2-formulae
over word equations whose sides contain at most one terminal. Proposition 2
already gives us a first answer: checking whether a Σ2-terminal-free formula
holds in A∗, with |A| ≥ 2, is undecidable. On the other hand, checking whether
a formula from FO(A∗, ·), whose sides contain at most one terminal a, holds in
{a}∗ is decidable, as it can be canonically seen as a formula in the Presburger
arithmetic.

We concentrate now on other decidable variants. In all these cases, we aug-
ment our signature with linear arithmetic over the lengths of variables; all decid-
ability results obtained in this setting hold canonically for the case when such
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restrictions do not appear. We first look at equations without any quantifier
alternation.

Proposition 4. Let a ∈ A. The satisfiability in A∗ of quantifier-free positive
formulae over word equations U = V , with U, V ∈ (X ∪{a})∗, with linear length
constraints is NP-complete.

Complementing the above result, we show that the satisfiability of quantifier-
free first order formulae over word equations U = V (so including negation), such
that U, V ∈ (X ∪ {a})∗, with linear length constraints is equivalent to solving
arbitrary word equations with length constraints. Hence, at the moment, we
cannot say anything about the decidability of such formulae. One direction of
our result is immediate, while the other follows similarly to Proposition 2.

Theorem 3. Let |A| ≥ 2 and a ∈ A. Given an equation U = V , with U, V ∈
(A∪X)∗, with linear length constraints θ, there exists a system S of positive and
negative equations Ui = Vi or Ui 	= Vi with Ui, Vi ∈ (X ′ ∪ {a})∗ and X ⊂ X ′

with linear length constraints θ′, such that S is satisfiable (in A∗) if and only if
U = V is satisfiable.

Building on Proposition 4, Theorem 4 considers the Σ2 fragment in the case
that only one terminal letter may appear in the equations. Note that this does not
necessarily imply |A| = 1. If the positive theory only is considered, augmented
with the Length predicate defined in the previous section (i.e., Length(x, y) is
true if and only if |x| = |y|), then we obtain a decidable fragment. Note in
particular that the Length predicate can be used in conjunction with simple
equations to model arbitrary linear length constraints.

Theorem 4. Let a ∈ A. The positive Σ2-fragment, restricted to word equations
containing only the terminal symbol a, augmented with Length, is decidable.

Firstly, we need the following lemma. Then, we give the full proof of Theo-
rem 4.

Lemma 3. Let Y = {y1, y2, . . . , yn} ⊆ X and let U, V ∈ (Y ∪A)∗. Let k > |UV |
and let h : X∗ → A∗ be the substitution such that h(yi) = abk+ia. Then h(U) =
h(V ) if and only if U = V (the strings U and V coincide).

Proof. (Theorem 4) W. l. o. g. we may assume that all arguments of the Length
predicate are either single variables or words in A∗. Indeed, if we have a “longer”
argument α over (X ∪ A)∗, we can replace it with a new variable x and add the
equation x = α. For the purposes of this proof we shall say that a term is trivial
if, for all the word equations U = V , U and V are identical, and moreover, all
Length predicates of the form Length(x, y) where either x = y ∈ X or x, y ∈ A∗

and |x| = |y|. If |A| = 1, decidability follows from the decidability of Presburger
arithmetic. Thus we may assume a, b ∈ A with a 	= b. W.l.o.g. we may assume
that we have a sentence in disjunctive normal form as follows:

∃x1, x2, . . . , xn.∀y1, y2, . . . , ym.(e1,1∧ . . . ∧e1,k1) ∨ . . . ∨ (et,1 ∧ . . . ∧ et,kt
), (1)
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where the ei,j are either: (1) of the form Length(z1, z2) where z1 and z2 are in
{x1, . . . , xn, y1, . . . , ym}∪A∗, or (2) individual word equations over the variables
x1, . . . , xn, y1, . . . , ym and the terminal a.

We shall show that an assignment for x1, x2, . . . , xn satisfies (1) if and only
if there exists s, 1 ≤ s ≤ t such that all the resulting atoms es,i become trivial.
The ‘if’ direction is straightforward, thus we consider the ‘only if’ direction.
Suppose the x1, x2, . . . , xn are fixed, and consider the result of each ei,j under the
substitution. Suppose that for each s, 1 ≤ s ≤ t there exists rs, 1 ≤ rs ≤ ks such
that es,rs

is non-trivial. Let p be the maximum over the lengths of all constant
terms in the sentence, lengths of the xi, and lengths of equations given by the
type-(2) atoms ei,j for 1 ≤ i ≤ t, 1 ≤ j ≤ ki. Consider the choice of y1, y2, . . . , ym

given by yk = abp+ka for 1 ≤ k ≤ m. By Lemma 3, if es,rs
is of type (2), then it

will evaluate to false. If es,rs
is of type (1), then we have three cases. Firstly, if

both arguments to the Length predicate are constant terms in A∗, then clearly
es,rs

will evaluate to false since it is non-trivial. Similarly, since the yi are longer
than all constant terms and substituted values of the xks, if exactly one of the
arguments is a constant in A∗ while the other is a variable in {y1, y2, . . . , ym},
then es,rs

will also evaluate to false. Finally, since |y�| 	= |y′
�| for all � 	= �′, if

both arguments are variables, es,rs
will again evaluate to false. Summarising the

above, for any given choice of x1, x2, . . . , xn there exists a choice of y1, y2, . . . , ym

such that any of the conjunctions containing a non-trivial equation or Length
predicate will be false. It follows that the sentence is satisfiable if and only if
there exists a choice for x1, x2, . . . , xn and s, 1 ≤ s ≤ t such that all the es,i

terms, 1 ≤ i ≤ ks become trivial.
For terms ei,j of type (2), this is reduced to solving a system of existentially

quantified word equations over x1, x2, . . . , xn as follows: suppose ei,j is the equa-
tion u0yi1u1yi2u2 . . . yipup = v0yj1v1yj2 . . . yjqvq, where p, q ∈ N0, ik, j� ∈ [1,m]
for 1 ≤ k ≤ p and 1 ≤ � ≤ q, and uk, v� ∈ ({x1, x2, . . . , xn} ∪ A)∗ for 1 ≤ k ≤ p
and 1 ≤ � ≤ q. Clearly, for a given choice of values for x1, . . . , xn, the equation
ei,j becomes trivial if and only if p = q, and u0 = v0, u1 = v1, . . . , up = vp,
that is, if x1, . . . , xn forms a solution to the system of equations u0 = v0, u1 =
v1, . . . , up = vp over the variables x1, . . . , xn and terminal symbols from A.

For a term ei,j of type (1), observe that they may only become trivial under
some substitution for the x�s either if it is already trivial, in which case it can
just be removed, or if both arguments are in {x1, x2, . . . , xn}. Thus, any of the
clauses (ei,1 ∧ . . . ∧ ei,ki

) containing a term ei,j not conforming to these two
cases can be removed entirely. After these two phases of removal, it remains to
solve, for each s, 1 ≤ s ≤ t, a system of equations (i.e., the conjunctions of
the systems derived from the es,j terms of type (2), as described above) subject
to a system of linear length constraints (derived from the terms of type (1)).
The resulting equations will also only contain the terminal symbol a, since they
are taken directly from the original equations, so the decidability follows from
Proposition 4. 
�

Note that the reasoning above can be modified in a straightforward way to get
decidability of the positive Σ2 fragment in the general case (but without length
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constraints), by substituting any of the well-known algorithms for solving exis-
tentially quantified systems of equations (e.g. Makanin’s algorithm, Plandowski’s
algorithm, Recompression) in place of Proposition 4. The resulting proof has sim-
ilar arguments to those of [9,23], although these results do not address this case
directly. Also, the decidability result shown in Theorem 4 is, in a sense, optimal,
as checking the truth of terminal-free arbitrary Σ2-formulae is undecidable.

Corollary 1. The truth of Σ+
2 -formulae over A∗ is decidable.

3.3 Decidability with Restricted Form

Following the results of the previous section, we explore one more decidable
fragment of FO(A∗, ·). More precisely, instead of restricting the terminal symbols
appearing in the equation(s) we restrict the variables, considering one of the
simplest cases of equations that are not in solved form, thus right at the border
of the equations that can be solved by practical string solvers [12,32]. We are
able to obtain decidability when augmenting the theory simultaneously with
linear arithmetic over variable lengths, regular constraints given as DFAs, as
well as constraints based on the predicates Subword and Eqa from the previous
section. Formally, we say that subword (resp. Eqa, abelian) constraints are sets
of pairs of variables (x, y) ∈ X2. Solving equation with these constraints requires
asserting that for each such pair, the corresponding predicate returns true (so
that, e.g., for each abelian constraint (x, y), the substitutions for x and y are
abelian equivalent).

Theorem 5. The problem of solving strictly regular ordered equations with reg-
ular constraints given by DFAs, linear length constraints, Eqa constraints (for
each a ∈ A), abelian constraints, and subword constraints is NP-complete.

Proof. Here we present only a sketch of the proof of this theorem. The proof rests
on the fact that solutions to strictly regular ordered equations have a particularly
well-suited form for parameterisation. In particular, by applying some canonical
arguments from the field of combinatorics on words, it can be shown that the set
of solutions is spanned by parametric solutions of the form h(x) = (uxvx)nxux

where |uxvx| is linear in the length of the equation, and nx may be any positive
integer if x is “overlapping” (i.e., some part of h(x) on the LHS coincides with
part of h(x) on the RHS) and 0 otherwise. Thus, when deciding if a solution
exists to the equation which also satisfies the length and regular constraints, it
is sufficient to firstly guess such a parametric form, and then decide whether
there exist values for the parameters nx such that the additional constraints
are satisfied. Deciding which values of the parameters are also valid under the
regular constraints can be done in an efficient way (non-deterministically) due
to Lemma 4: simply guess them. Subword constraints are handled in the same
way due to a similar technical result, Lemma 5.

Lemma 4. Let L be a regular language given by a DFA, M , with n states. Let
u, v ∈ A∗. Then there exist q ∈ N≤n, P, S ⊆ N≤n ∪{0} such that the intersection
of (uv)+u and L is given by {(uv)su | s ∈ S} ∪ {(uv)qμ+pu | μ ∈ N ∧ p ∈ P}.
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Lemma 5. Let u, v, u′, v′ ∈ A∗. Let S = {(p, q) | (uv)pu is a sub-
word of (u′v′)qu′}. Then either S = ∅, or there exist integers p1, p2,
q1, q2, q3,0, . . . , q3,p2−1, and r1, r2, . . . , rp1+p2−1, all polynomial in |uvu′v′|, such
that

S = S′ ∪
⋃

1≤i<p2

{(p, q) | p = p1 + kp2 + i ∧ q ≥ q1 + kq2 + q3,i ∧ k ∈ N}

where S′ = {(p, q) | p < p1 + p2 ∧ q ≥ rp}. Moreover, this representation of S
can be computed in (nondeterministic) polynomial time.

Having so-far obtained expressions for parametric solutions satisfying the
equation and the regular constraints and subword constraints, it remains to
check whether any of the remaining possibilities also satisfy the length, abelian,
and Eqa constraints. It is straightforward, having already guessed the values ux

and vx, to convert the latter two into length constraints. Thus finding solutions
satisfying all constraints is eventually reduced to solving a linear system of Dio-
phantine equations where the unknowns are the parameters. Since the resulting
coefficients can be shown to be at most exponentially large, this is possible in
non-deterministic polynomial time, see [26]. 
�

For regular-ordered equations without the strictness (i.e. variables may occur
in only one side), the equivalent of Theorem5 does not hold. It is a straight-
forward exercise that regular-ordered equations where each side has only one
singly-occurring variable, with regular constraints given by DFAs, is PSPACE-
complete. This follows from the fact that determining whether the intersection
of n DFAs is empty is PSPACE-hard. Similarly, the undecidability proofs for
the predicates described in Sect. 3.1 require only very restricted combinations
of equations, so we can expect that when such constraints are added, strict
restrictions on the structure are necessary for maintaining decidability.
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straints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
255–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 15

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
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